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Introduction: 
Path planning is one of the fundamental issues for automated valet parking system. However, current 
automatic parking system solutions simply choose the center of the parking bay as target parking 
pose, which is not the most suitable pose in many situations. Besides, it requires further study to 
effectively evaluate the parking trajectory; particularly, the path generator might not figure out the 
suitable trajectory if adjacent vehicle is improperly parked.  

This paper presents an optimal parking pose and trajectory selection approach based on the 
information of the ultrasonic radar and vision. To evaluate the positions of obstacles and parking lines 
when parking, we construct a virtual potential field that can effectively represent the real parking 
scenario. Thereafter, particle swarm optimization approach is used to iterate possible parking poses 
and select the one with the least risk. The parking trajectory is generated and optimized to minimize 
the risk degree, and finally smoothed using spline interpolation. The experiment results show that our 
method can adaptively adjust the parking pose in different parking scenarios, and able to generate 
feasible and smooth parking trajectory from arbitrary starting pose to the optimal parking pose. 

Main Sections: 
Artificial Potential Field Construction and Cost Evaluation 
Considering the high price of lidar, most vehicles on the market nowadays are using cameras or 
ultrasonic radar for advanced driver-assistance systems. The camera can obtain the lane line 
information on the road using lane-line detection algorithm, and the ultrasonic radar can quickly 
detect physical obstacles such as other vehicles and fences [5]. However, even for some multi-sensor 
detection schemes equipped with both ultrasonic radars and cameras, only one type of information is 
used during the auto-parking process, and this is insufficient. In this paper, we propose an artificial 
potential field method to fuse the information of the ultrasonic radar and vision camera such that the 
circumstances around the vehicle can be better evaluated. 

Artificial potential field is a commonly used path planning algorithm introduced by Khatib [2]. 
However, considering that parking normally happens in narrow areas, and directly using traditional 
artificial potential field method often fails to find a feasible solution [4]. Also, the algorithm cannot 
guarantee that the motion of the vehicle satisfies the kinematic constraints. Therefore, in our 
approach, a modified artificial potential field method is developed to help evaluate the safety of the 
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surrounding environment, and the parking path is defined geometrically and search for the optimal 
one in configuration space. 

Let W  denote the 2-D Euclidean parking plane. To distinguish the two different types of obstacles 
in the neighborhood of the parking space detected by ultrasonic radars and cameras, the following 
notation is used in this paper [1]. Physical obstacles detected by ultrasonic radar are represented as the 

compact sets of points , 1,2,...,iOU i n  in W . Similarly, parking lines detected by the camera are 

represented as , 1,2,...,iOC i m . As shown in Eqn. (1.1), the potential energy U  at point x  is computed 

by summing up the effects of all the neighborhood obstacles. For a specific obstacle point 
iOU or 

iOC , 

the potential energy it contributes at point x is computed in Eqn. (1.2). 
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where ( )jd x is the distance from point x  to the obstacle j , j  is the potential repulsive constant, jQ is 

the range of the influence of obstacle j . During the auto-parking process, the vehicle first needs to 

ensure that it can avoid physical obstacles, and then try to park as close as possible along the middle 
of the parking space according to the parking lines. Therefore, for obstacles OU  detected by ultrasonic 

radars, maxjU , j , and jQ  are assigned with large values to ensure that the vehicle keeps a safe 

distance from it. For the parking lines OC  detected by the cameras, these parameters are assigned 
with relatively small values. Their relationship is described in Eqn. (1.3). In this way, our algorithm can 
fuse different obstacle information and evaluate their effects. 

 

 

 
 

Fig. 1: The first row shows the parking scenario without nearby vehicles: (a) Parking lot map, (b) 
Potential filed (contour plot), (c) Potential filed. The second row shows the parking scenario when 

(a) (b) (c) 

(f) (e) (d) 
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nearby vehicles exist and the parking condition is imperfect: (d) Parking lot map, (e) Potential filed 
(contour plot), (f) Potential filed. 
 
Fig. 1 shows two common parking scenarios in the underground garage and the corresponding 
potential field. Fig 1. (a) and (d) is the initial parking environment. The dash area denotes the obstacles 
detected by ultrasonic radars and the red lines denote the parking lines detected by cameras. Fig 1. (b), 
(c), (e), (f) shows the corresponding potential fields. The higher the potential energy (yellower part in 
the figure), the more likely the autonomous vehicle collides with obstacles or crosses the lane lines. 
 
Optimal Parking Pose Computation 
To describe the final parking pose of the vehicle, three control parameters are used: vehicle center’s 

coordinate [ , ]x y , and the vehicle’s heading angle  relative to the x-axis shown in Fig 1. Hence, the 

pose configuration can be represented as [ , , ]q x y . All possible final parking poses form the 

configuration space C , which is a Euclidean group of 2SE(2) R SO(2) . Let ( )A q be a subset of C  

referring to the points covered by the body of vehicle at configuration q . After constructing the 

potential field, the risk degree for a given vehicle pose q  can be measured by sampling the vehicle 

coverage space ( )A q  and computing its average potential energy. Therefore, the problem of selecting 

the optimal parking pose can be transformed into the problem of finding the vehicle pose that 
minimizes the average potential energy. 
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Where n  is the sampling number and p  refers to the sample point in the vehicle coverage area ( )A q . 

We then use the Particle Swarm Optimization (PSO) to solve the above optimization problem and 
determine the optimal pose. Within the configuration space C , particles are first initialized with an 

arbitrary pose configuration [ , , ]q x y . The velocity attribute t
iv  determines the particle’s position in 

the next iteration. During the iteration process, each particle updates its velocity according to its 
previous velocity and the optimal position of individuals and groups, and thus updates its position 
based on its previous position and the velocity. The iteration rule is shown as follows: 

 1 1t t t
i i iqq v  (1.5) 

 1
1 1 2 2

t t t t t t
i i i i iv v c r Q q c r G q  (1.6) 

Where, t
iq  is the position of the particle i  at the t  th iteration, and t

iv  is the velocity of the particle i  

at the t  th iteration. After the iteration, the optimal parking pose with minimum potential energy can 
be obtained. As Fig 2 shows, we test our approach in three common parking scenarios, one ideal 
parking scenario, and two less perfect parking scenarios. Refer to Fig 2. (a), case 1 shows the ideal 
scenario when no adjacent vehicles exist t, and the parking process is only guided by parking lane 
markers. It can be seen that our algorithm chooses the parking pose almost at the center of the target 
parking bay with zero heading angle as expected. Refer to Fig 2. (b), case 2 is the case when two 
vehicles are already parked on both sides, but too close to the right parking lane. Refer to Fig 2. (c), 
case 3 is when the nearby vehicles’ heading is not perpendicular to the parking spot. As for the last 
two cases, our method adaptively adjusts the pose slightly to better fit the actual parking condition. 
Table 1 compares the optimal pose computed by our method with two other parking poses that are 
default chosen by many automated valet parking systems in case 3 (Fig. 2(c)). The result shows that our 
algorithm is capable to adaptively adjust the vehicle pose even in imperfect parking scenarios and 
reach the least average potential energy. 
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Fig. 2: Optimal parking position. (a) Parking lot without adjacent vehicles, (b) Enclosed parking lot with 
nearby vehicles parked perfectly, (c) Enclosed parking lot with nearby vehicles parked improperly. 
 

Parking Pose x/m y/m θ/° Average Potential Energy 

Center of parking spot 0.0 0.0 90.0 20.573 

Center of nearby vehicles 0.0 0.0 86.0 21.066 

Our method 0.06 0.03 88.78 20.356 

 
Tab. 1: Comparison of optimal parking pose with two common default poses in case 3. 

 
Parking Trajectory Computation 
Since the speed is relatively slow during parking, the impact of sliding can be ignored. Therefore, the 
kinematic model of the autonomous vehicle can be simplified as the Ackermann steering model as 
shown in Fig 3. (a) [3].  
 

 
 

Fig. 3: (a) Ackermann steering model, (b) Parking trajectory definition. 
 
Fig 3. (b) shows the definition of the parking trajectory. Two arcs are used to guide the vehicle from the 

starting point A to point B, and point B to point C, with the turning radius of 
2R  and 1R , respectively. 

Then, a line with distance d  guides the vehicle to the final parking position. Let t denote a parking 

trajectory using the above definition, which can be expressed as 1[ , ]t R d . All the possible parking 

trajectories span a 2-D configuration space and can be represented as 

1 1 min 2 min max[ , ] | , ,0T t R d R R R R d d . Here, minR  is the minimum turning radius according 

to the Ackermann steering model. For a trajectory t , we sample several poses along the path, and use 
the average covered potential energy as a measure of the risk degree of the trajectory. The optimal 
trajectory selection problem can thus be transformed into an optimization problem as follow. 
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Where, 
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Next, PSO is also implemented to search for the parking trajectory t with the minimum potential 

energy in T. Since the path generated so far is a composition of circular arcs and line segments, it’s 

discontinuous on the tangent point. This means that the ego vehicle will either needs to be steered or 
stopped suddenly along the path, which should be avoided. Here, we solve this problem by sampling 
the trajectory with a given step to obtain discrete points along the path, then use a cubic spline curve 
to interpolate these points. Fig 4. (a)(b) shows the final parking trajectories our method generated from 
arbitrary poses to the optimal parking pose in two different parking cases. We also compare our path 
generator with a widely used approach [3]. The comparison result is shown in Fig 4. (c)(d).  It can be 
seen that our approach selects the final parking pose with a little rotation to better fit in this particular 
parking scenario. Moreover, our path adjusts the vehicle’s heading earlier than the conventional 
method and does not even cross any side of the parking lane during the parking process. 

 

  

 

Fig. 4: (a)(b) Final parking trajectory in two different parking scenarios, (c)(d) Trajectory comparison 
between our method and conventional method, where red lines denote trajectory generated by our 
method. 

Conclusion: 
In this paper, a parking pose selection algorithm based on modified artificial potential field and 
particle swarm optimization is proposed. The ultrasonic radar and vision information is fused and 
considered to help select the optimal final parking pose which is most similar to human driver’s 
behavior. We also presented a path-planning algorithm to effectively select a smooth and collision-
free path that minimizes the risk degree. The experimental results demonstrate that our method can 
adaptively adjust the final parking pose and generate feasible trajectory in different parking scenarios. 
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