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Introduction:

The deformation behavior of an elastic object depends on its underlying material. We propose to design
material distribution of an elastic object by specifying forces applied to some positions of the object and
the respective desired deformation. The design problem is then converted into optimizing the material
assignment for individual elements of the object to match the specified deformation behavior. Xu et al.
[14] presented an interactive approach to solve the problem for tetrahedral meshes. Our work is focused
on hexahedral meshes, which have some advantages in finite element analysis and engineering applications
[3]. We consider first-order hexahedral elements. While the fully automated generation of hexahedral
meshes is challenging [2, 17, 7, 4], the accuracy and simulation speed of the first-order hexahedrons are
much better than tetrahedrons [8, 11, 9]. Hence the hexahedral meshes are a popular representation in
numerical homogenization [6], microstructure design [10, 18], and topology optimization [12, 13].

We also propose to use Ly-regularization based optimization for material design, which is especially
suitable for objects with sparsely distributed materials. Previous works usually use Ls-regularization
in their optimization, which makes the parameters of the material be smoothly distributed. However,
sparsely distributed materials are often seen in real applications, which also facilitate 3D printing. Note
that Lg-regularization is known to encourage sparsity [15, 16]. In this work, we demonstrate that the
Lg-regularization is suitable for material design of hexahedral meshes with sparse material distribution.
Overall, the contributions of the paper are in two aspects:

e We propose a new material design method for hexahedral mesh models, which is suitable for fast

simulation and also achieves good accuracy.

e We formulate the problem as a minimization problem with Lg regularization to encourage sparse

distribution of material.

Main Idea and Method:

The input to our problem is a hexahedral mesh with specified forces f € R3" and displacements @ € R3¢
on some selected vertices. We need to find a heterogeneous Young’s modulus’ distribution £ € R™ such
that the displacement of selected vertices of the mesh will conform to what user-specified before when
the mesh is applied with prescribed forces. Our basic idea is to use Lg regularization for the material
design problem of hexahedral meshes. It is observed that many objects in real life have the clustering
of similar materials in one section, which conforms to the idea of Ly regularization. Compared with Lo
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regularization, L regularization prompts more sparse distribution. Therefore, we formulate our method
using Lo regularization. The main steps of our method can be stated as follows:
e Build finite element equations for hexahedral elements.
e Construct the objective function that measures the difference between user-specified displacements
and displacements.
e Solve the Lj regularization based minimization problem numerically.

(1) Construction of Finite Element Equations

Now we briefly describe the finite element equations of hexahedral elements. We limit our discussion to
first-order, linear isotropic hexahedral elements. In each hexahedron, the element stiffness matrix k. [5]
that relates forces and displacements is:

1 1 1 NG NG NG
ke = / / / BTDBAN® = / / / B'"DBJ|dédnd¢ ~ Y 0> > wiwwy,BTDBI|  (2.1)
Q) -1J-1J-1 i=1j=1k=1

Here, element domain §(¢) is defined in physical coordinate. Matrix D is the elasticity matrix to relate
stress and strain. Matrix B is the strain-displacement matrix that needs to be computed from shape
functions. Shape functions are used to determine the value of the state variable at any point of the
element based on values of the state variable on different nodes of that element. To deal with different
shape functions for different hexahedron elements, we map different hexahedron elements to reference
elements with the same shape functions. &, i, and { represent the reference coordinate. Jacobian matrix
J is used to map the derivatives of shape functions from physical to reference coordinate. Since the above
integration process is difficult to solve, we use Gauss integration. Before optimization, we also specify
sufficient fix points to remove the rigid degrees of freedom, which make the global stiffness matrix become
non-singular.

(2) Construction of the Objective Function.

Since different mesh displacements U are uniquely determined by underlying material distribution through
solving a linear system K(E)U = F, we are able to design a material distribution £ € R™ to match
user-specified displacements @. we can recast the material design problem as a minimization problem:

min AU — al|> + R(E) s.t. E € [Emin, Pmax) (2.2)

where A, € R3*3" is a selection matrix to map full displacements to the displacements on selected
vertices c. U € R®" is the displacement vector of all vertices. @ € R3¢ is the displacement vector of
selected vertices specified by users. R(F) is a regularization term to enforce our prior on the distribution
of material parameters. F, € R™ and Enp.x € R™ are box constraints set by the user, e.g. we can
enforce non-negative Young’s modulus by setting F;, = 0 and Ep . = +00.

Throughout the paper, we use the relative handle displacement error €, to evaluate our optimization
result. The ¢, is defined as:

Ey = —iT (2.3)
where g, can be formulated as a percentage to evaluate the optimized results.

(3) Lo-Optimization
Let D(E) = ||A.U — ul|® and then we focus on the regularization term R(E). If Young’s modulus E is
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optimized by Lg-regularization, the objective function becomes:
min D(E) + A > B - Bl (2.4)
(i,5)eN

Note that the objective function of the minimization problem is not differentiable. To efficiently solve
the problem, we introduce the auxiliary variable P; ; = E; — E;. Then our problem becomes

min D(E) + A (‘X_):N |Pijlly st. Prj=FE; — E; (2.5)
7,7)€

Since P; ; = F; — E; is the equality constraint, we can use the alternating direction method of multipliers
(ADMM) to solve the problem. We then formulate the augmented Lagrangian as:

r
D(E) + Z ()\ ||Pi,j||0 + Ep |E; — E; — Pi.,j||2 + Aij (B; — E; — Piyj)) (2.6)
(i,j)EN

Here, the constant value doesn’t affect optimization. we can combine the last two terms as:

T /\z 1
DE)+ Y (WPl + 28 - B - Py 2217) @)
(i,§)EN P
Then, the problem can be solved by the iterative method:
1. Firstly, we fix E and optimize the auxiliary variable P.

, T Aij
min (A||Pi7j|o + S IIE — B — Py + J||2) (2:8)
(i.5)EN v

This problem becomes a hard threshold problem. The auxiliary variable P can be optimized point-
wisely by setting P; ; equals to zero or not.

2. Secondly, we fix the auxiliary variable P and optimize E. The L term is no longer active in this
step. Therefore, we have:

- "B B P4 22
ménD(EH(Z);NQHEz E; Pm+rp\| (2.9)
2y

Notice that the current objective function is derivable. We can directly solve this problem by either
nonlinear conjugate gradient or LBFGS method with box constraints.

3. In the last step, we update Lagrange Multiplier )\;; the same way as the original ADMM algorithm.
Here we design the update sequence to reduce the effect of the deviation phenomenon. If we first optimize
Young’s modulus, the augmented term and Lagrange term also plays an important role in affecting
material distribution in the first iteration. Even if we use a warm start from Lo regularization method,
these two terms may still be prone to derive away from the warm start. As a result, if this phenomenon
deviates the warm start to a position that too far away from optimal, it’ll cause difficulty in converging
to a high-precision solution.

Examples:

To demonstrate the capability of our algorithm, we have applied the method to different models. Fig.1
and Fig.2 compare the optimized result between Lo and Ly regularization. Fig.3 is a showcase of the
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E:0.5 11

(a) Input Configuration (b) La regularization, &, = 0.29% (¢) Lo regularization, e, = 0.84%

Fig. 1: Comparison between Lo regularization and our Lg regularization on bar model. (a) Input config-
uration, including fix points, user-specified forces, and the target displacements computed from ground
truth material distribution; (b) Optimized result of Lo regularization; (c¢) Optimized result of our Lo
regularization.

FE:0.1
(a) Input Configuration (b) La regularization, &, = 2.61% (c) Lo regularization, e, = 2.27%

Fig. 2: Comparison between Lo and Lg regularization on human sculpture model. (a) Input configuration
of the human sculpture model; (b) Optimized result of Ly regularization; (c) Optimized result of our Lo
regularization.

| H
E:0.5 E:0.4

(a) Input Configuration (b) Lo regularization ¢) Input Configuration (d) Lo regularization

Fig. 3: Ly regularization effect on pig and bunny model. ( ) Input configuration of the pig model; (b)
Corresponding Lo regularization result, €, = 1.63%; (c¢) Input configuration of the bunny model; (d)
Corresponding Ly regularization result, ¢, = 1.31%

Ly regularization effect on different models. In our experiments, we supposed ground truth material
distributions. The displacements of the selected vertices can be computed from ground truth material
distributions. Then, we can use the computed displacements as input to our algorithm.

Conclusions:

This paper has presented an efficient numerical method for optimizing Young’s modulus distribution over
a hexahedral mesh to achieve the desired deformation. The method allows imposing box constraints
easily. The use of L regularization in the optimization shows some advantages especially for sparsely
distributed materials. In future, we will compare our method with other discrete methods like material
dithering [14] and decision tree [1].
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