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Introduction: 
3D models of industrial plants are very useful for simulating maintenance work. However, in the case 
of facilities built in the old age and repeatedly renovated, 3D models often do not exist, and even reliable 
drawings may not exist. This problem can be solved by creating 3D models from point clouds captured 
using a terrestrial laser scanner (TLS). 

Since large industrial plants contain a large number of components, it is necessary to identify and 
extract each component from point clouds. This task is not easy because it is difficult to obtain a 
complete point cloud of each component due to limited scanning positions. In industrial plants, the 
shape of many components is determined by the industrial standards, and most components  are 
composed of simple surfaces such as cylinders and planes. Several methods have been proposed to 
identify standard components using connection rules between components [1], [3]. However as shown 
in Fig 1, some components have shapes that are not defined by the industrial standards, and it is difficult 
to uniquely identify such components using these methods.  

In recent years, machine learning has become a common tool, and especially convolutional neural 
network (CNN) has achieved excellent scores for images. If point clouds of components can be 
adequately encoded as feature vectors, it may be possible to identify them from point clouds. However, 
CNN requires a large number of training data with labels to achieve a high classification capability. It is 
actually very costly and time-consuming to acquire point clouds of many industrial plants and segment 
the point clouds into each component with a label.  

To remedy this problem, it is desirable to train CNN using CAD data instead of captured point clouds. 
In this paper, we discuss methods for augmenting training data by using virtual point clouds generated 
from CAD models. 

Generation of 2D Images from Point Clouds: 
In our previous work [4], we proposed a method for identifying components in industrial plants by 
applying CNN to RGB, intensity, and depth images that were generated from point clouds captured using 
a TLS. Fig. 2 shows a process for generating a 2D image from a point cloud. Since coordinates acquired 

     
(a) (b) 

Fig. 1: Components with various shapes: (a) Flange and (b) Valve. 
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by a TLS are calculated from the distance 𝑑, the azimuth angle 𝜃, and zenith angle 𝜙 of laser beams, a 
point cloud can be mapped on the (𝜃, 𝜙) plane, as show in Fig. 2(a), (b). Since the image defined by 𝜃 and 
𝜙 is distorted, the coordinate (𝜃, 𝜙) is converted to the coordinate (𝐼, 𝐽) on the perspective projection 
plane, as shown in Fig. 2(c). The converted image preserves the linearity, as shown in Fig. 2(e). 

Generation of Depth and Intensity Images from CAD Models: 
To train a CNN classifier, a large number of images are required. Therefore, we generate 2D images from 
CAD models. Fig. 3 shows a process for 2D image generation. First, dense points are randomly generated 
on faces of a CAD model. For generating points, a triangle face is randomly selected with a probability 
proportional to the area. Then, point P is generated on the face using the vertices A, B, C of the triangle 
and two random values 𝛼 and 𝛽 within [0, 1], as: 

𝑷 = (1 − √𝛼)𝑨 + √𝛼(1 − 𝛽)𝑩 + √𝛼𝛽𝑪 
Fig. 3(b) shows points generated on the CAD model. The generated points are randomly rotated around 
the X, Y, and Z axes, and moved to random positions. Then, each point is projected on the image plane, 
as shown in Fig. 3(c). On each pixel of the 2D image, the depth or intensity value is described. By iterating 
this process many times, a large number of training data can be created from a CAD model. Fig. 3(d) 
shows depth images generated from a CAD model.  

Estimation of Intensity of CAD Models: 
Typical TLSs output an intensity value for each point. The intensity value is calculated from the strength 
of the laser beam reflected from an object. The strength of the returned laser beam depends on the 
distance from the scanner, the irradiation angle, the material and color of the object, and so on. When 
the distance from the scanner is larger, the strength of the reflected light becomes smaller. The intensity 
values are calculated by compensating for the effect of distances so that the intensity image looks like 
a natural black and white image.  

  
(a) (b) 

   
(c) (d) (e) 

Fig. 2:  Generation of 2D images from point clouds: a) Angles of laser beam, (b) RGB image on  
the (𝜃, 𝜙) plane. (c) Close-up, (d) Perspective projection, and (e) Perspective image. 
 

    
(a) (b) (c) (d) 

Fig. 3: Images generated from CAD model: (a) CAD model, (b) Dense points on CAD model,  
(c) Points projected on the image plane, and (d) Depth images. 
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To generate intensity images from CAD models, intensity values have to be estimated. However, the 
intensity value is calculated using a scanner-specific algorithm, and the vendor proprietary module is 
required for calculating intensity values from raw data. Therefore, we estimate the intensity values of 
virtual point clouds using actual point clouds. We suppose that the intensity values depend only on 
irradiation angles. First, irradiation angles and intensity values are calculated from actual point clouds. 
To obtain irradiation angles, the normal vector at each point has to be calculated. Although the normal 
vector at each point can be calculated by fitting a plane to neighbor points, it is noisy and unstable. 
Therefore, we fit a cylinder to points of each cylindrical component using the RANSAC method [2]. The 
normal vector at each measured point is obtained as the normal at the nearest point on the cylindrical 
surface. The irradiation angle 𝜃 at the point is calculated as the angle between the normal vector and 
the laser beam. 

In industrial plants, there are a lot of cylindrical components. Since a cylindrical surface contains a 
wide range of normal vectors, intensity values for various irradiation angles can be obtained. To estimate 
the intensity value, we approximate the intensity value as 𝐼 = 𝑓(cos 𝜃) using a polynomial function 𝑓.  In 
this study, the piecewise polynomial function is calculated simply by fitting a cubic B-spline curve. 

Intensity images can be generated from CAD models using estimated intensity values. Fig. 4 shows 
samples of intensity images generated from CAD models. 

Augmentation of Point Clouds Generated from CAD Model: 
In CNN, datasets are typically augmented to avoid overfitting to specific data. The number of training 
images is often increased by rotating, flipping, scaling, shearing, and adding noises to the original 
images. In addition to these augmentations, images created from point clouds should reflect the 
characteristics of point cloud measurement. In general, missing portions are generated due to occlusions 
and outliers in actual point clouds. In this sense, virtual point clouds generated from CAD models are 
unrealistically clean compared to actual point clouds. In this research, we focus on augmentation by 
adding missing portions to point clouds generated from CAD models.  

In this research, missing portions are approximated as circular regions or polygonal regions. For 
generating a circular missing portion, a point is randomly selected and the k-nearest neighbor points 
are removed from the point cloud. This process are repeated n times to eliminate n circular regions. 
Then, the depth image is generated using the remaining points. 

For removing a polygonal region, a pixel position is randomly selected on the depth image. Then, m 
points are randomly selected from a range within the distance d from the selected pixel. An m-sided 
polygon is generated by connecting the selected m points, and the polygonal region is removed from 
the depth image. This process are repeated n times to eliminate n polygonal regions.  

Fig. 5 shows a process of point removal. In the upper case, circular regions are removed from the 
depth image. In the bottom case, polygonal regions are removed. 

   

   
Fig. 4: Intensity images created from CAD models. 
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Experimental Results: 
In order to evaluate our method, we trained classifiers and verified the accuracy. It is considered that 
point clouds generated from CAD models are effective when the number of actual point clouds is small. 

 
Therefore, we used 2 sets of actual point clouds with different numbers of components as training data. 
Tab. 1 shows the numbers of actual point clouds, virtual point clouds, and test data. 

We trained the classifiers by transfer learning based on the pre-trained VGG16 [4]. For evaluating 
the effect of virtual intensity images, we created two types of classifiers. One used only intensity images 
generated from actual point clouds, and the other used intensity images generated both actual and 
virtual point clouds. The results are shown in Tab. 2. The results show that the accuracy was improved 
by using virtual intensity images. In particular, the F-measures has improved considerably for 
components with a very small number of training data, such as Tees. 

Then we evaluated classifiers using depth images. We created four classifiers using depth images 
generated from (1) only actual point clouds, (2) both actual and virtual point clouds without 
augmentation, (3) actual point clouds and virtual point clouds augmented by removing circle regions, 
and (4) actual point clouds and virtual point clouds augmented by removing polygonal regions. The 
results are shown in Tab. 3. The accuracy was improved by augmented point clouds. In Case 1, F-
measures for circle region removal and polygonal region removal were almost the same.  It is considered 
that missing portions were effective to enhance a generalization capability. Tab. 4 shows F-measures for 
Case 2 using classifiers for (3) and (4). The result shows that the classifiers trained using augmented 
depth images achieved good F-measures even when the number of actual point clouds was small.  In 
these evaluations, F-measures were better when circle regions were removed.  

Conclusion: 
In this research, we proposed a method for generating intensity and depth images from CAD models. 
Intensity values of virtual point clouds were estimated from actual point clouds of cylindrical objects. 
In addition, we described a method for augmenting virtual point clouds by generating missing portions. 
In our evaluation, these methods were effective to improve the accuracy of classification.  

In future work, we would like to investigate other methods for augmenting virtual point clouds. In 
addition, we would like to investigate methods for generating incomplete point clouds based on CNN. 
Moreover, we would like to consider modeling components using the created classifier. 
 

 

Training data 

Test Data Actual Point Clouds Virtual Point Clouds 
for Augmentation Case1 Case2 

Flange 80 40 120 80 
Elbow 86 43 80 85 

Straight 40 20 80 40 
Tee 11 6 80 10 

Valve 22 11 80 20 

 

    

   
(a) (b) (c) (d) 

Fig. 5:  Augmenting virtual point clouds (Upper: Removing circular regions, Bottom: Removing 
polygonal regions): (a) CAD model, (b) Partly missing point cloud, (c) Missing portions shown in 
blue, and (d) Incomplete depth image. 
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Manometer 4 2 80 3 

total 243 122 520 238 

Tab. 1: Numbers of training data. 

 Case1 Case2 

 Actual Intensity Actual & Virtual Actual Intensity Actual & Virtual 

Flange 91.7% 91.3% 89.3% 90.1% 
Elbow 90.1% 91.7% 89.3% 90.6% 

Straight 95.1% 97.5% 91.6% 94.7% 
Tee 73.7% 85.7% 42.9% 58.8% 

Valve 81.0% 82.9% 77.8% 81.1% 
Manometer 80.0% 80.0% 85.7% 80.0% 

Average 89.9% 91.4% 86.7% 88.9% 

Tab. 2: F-measures of classifiers using intensity images. 
 

 Only Actual Actual & Virtual Actual & Virtual  
(Circle Removal)  

Actual & Virtual  
(Polygon Removal) 

Flange 94.3% 97.4% 98.1% 98.1% 

Elbow 92.1% 95.5% 96.0% 95.3% 

Straight 92.5% 97.5% 96.3% 97.5% 

Tee 62.5% 75.0% 84.2% 85.7% 

Valve 97.4% 95.2% 100.0% 100.0% 

Manometer 100.0% 100.0% 100.0% 100.0% 

Average 92.2% 95.6% 96.6% 96.7% 

Tab. 3: F-measures of classifiers using depth images (for Case 1). 
 

 Circle Removal  Polygon Removal 

Flange 96.2% 95.6% 
Elbow 95.4% 90.8% 

Straight 96.1% 85.7% 
Tee 85.7% 77.8% 

Valve 90.0% 94.7% 
Manometer 100.0% 100.0% 

Average 95.0% 91.5% 

Tab. 4: F-measures of classifiers using actual and virtual point clouds (for Case 2). 
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