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Introduction:

Consider a set S of points in the plane, called sites, and a signal that is sent out from each site. Now
assume that each signal starts at the same time, say time t := 0, and propagates with unit speed uniformly
in all directions. The locations at time t ≥ 0 that are reached by a signal sent out from a site s ∈ S is
given by a circle (�o�set circle�) of radius t centered at s, and the area that has been covered by that
signal by time t is the corresponding circular disc.

For t su�ciently small, no pair of these discs will intersect. However, as t increases, intersections will
occur. Apparently, intersections of two such circles correspond to points of the plane that are reached by
two di�erent signals at the same time. Assigning each locus of the plane to the site whose signal reached
it �rst yields a partition of the plane that is well-known as the Voronoi diagram of S; cf. Fig. 1(a).
Adjacent regions of this partition are separated by straight-line segments. (We refer to the textbook [11]
for more background information on Voronoi diagrams.)

The boundary of the area covered by at least one signal by time t is called the wavefront of S at time
t. It is easy to see that every wavefront of S consists of circular arcs whose endpoints lie on the Voronoi
diagram of S.

Voronoi diagrams can be generalized to settings where the signals no longer all travel at the same
speed. To each site s a weight σ(s) is assigned that speci�es how fast the signal travels: In this modi�ed
setting, the signal has reached points at distance σ(s) · t (from s) at time t. The corresponding Voronoi
diagram is known asmultiplicatively weighted Voronoi diagram [5]. The common boundary of two adjacent
regions is no longer a line segment but is a circular arc. Also, the region associated with a speci�c site
s can now be disconnected or multiply-connected; cf. Fig. 1(b). In a similar way, one can generalize the
Voronoi diagram by allowing the sites to start emitting their signals at di�erent points in time. This
leads to the concept of additively weighted Voronoi diagrams.

Voronoi diagrams have become an important geometric tool for modeling and analyzing coverage areas
of sensors and transmitters. We refer to [4, 10, 12] for sample publications on this application. Common
to these publications is the fact that the signal propagation is assumed to be uniform both over all sites
and over all directions for each site.
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(a) (b)

Fig. 1: (a) The Voronoi diagram of point sites. Wavefronts for some speci�c points in time are shown
by dashed curves. (b) The multiplicatively weighted Voronoi diagram has regions which need not be
connected (e.g., the light-blue region). Again, some wavefronts are shown by dashed curves.

Our Contribution:

The assumption that signals and their spreading are uniform provides only a rather coarse approximation
of reality. Rather, di�erent sites should be assumed to emit signals of di�erent strengths. Furthermore,
the spreading of a signal should be assumed to be anisotropic, i.e., to vary with the direction.

In this work we show how concepts of computational geometry can be applied to provide a re�ned
model for a subsequent coverage analysis: We interpret increasing distance in the Voronoi setting as
decreasing signal strength and provide a system where initial signal strength may vary among the sites
and its rate of change may vary over di�erent directions for each site. Depending on whether or not the
spreading of a signal is stopped once it reaches a point of the plane that has already been covered by
some other signal, we get connected or disconnected coverage areas.

Star-induced Voronoi diagram:

In order to model an anisotropic spreading of signals, we consider a variant of point-site Voronoi diagrams:
We no longer use an o�set circle to model the area covered by one site's signal. Rather, we replace the
circle by a star-shaped polygon that contains the site in its kernel. (Recall that a polygonal area is
star-shaped if it contains at least one point from which its entire boundary is visible; the set of all those
points is called its kernel.) We call such a polygon an o�set star. Mitered o�sets of an o�set star are the
appropriate generalization of the expansion of o�set circles; cf. Fig. 2: If a vertex v of the o�set star of
s at time t is at distance t · d from s, for some d ≥ 0, then it will be at distance t′ · d from s at time t′,
thereby also moving on the ray from s through v. Of course, we allow o�set stars of di�erent shapes and
sizes for di�erent sites. And, in an analogy to additively weighted Voronoi diagrams, we allow the o�set
stars to start their expansion at di�erent points in time.

One way to interpret this generalization is that each input site is the location of a transmitter whose
signal strength decays with distance, but not at the same rate in every direction. Then, o�set stars of
the same shape but at di�erent sizes can be seen as transmitters with the same anisotropic emission
characteristics but whose signals decay at di�erent rates. Furthermore, the wavefronts derived from the
expansion of all o�set stars are iso-contours of signal strength.

In theory, any star-shaped polygon that contains its site in its kernel can be used as o�set star for that
site. Of course, the more vertices the polygon has, the �ner a direction-dependence of the spreading of
the signal can be modeled. Feedback obtained from companies tells us that polygons with 10�20 vertices
will be good enough for practical applications. Note that the o�set stars shown in this work (cf. Fig. 2)
were chosen for visual clarity and simplicity rather than genuine practical relevance.
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Fig. 2: Six sites with di�erent o�set stars are shown. Some mitered o�sets for distinct points in time
show the expansion of the o�set stars, i.e., how the signals spread in di�erent directions.

Similar to how classic Voronoi diagrams tessellate the plane into regions such that all points within
the same region have been reached �rst by the same o�set circle, we now want to partition the plane into
regions such that all points of a region are reached �rst by the same o�set star. We call this structure
the star-induced (weighted) Voronoi diagram; cf. Fig. 3(a). As for standard multiplicatively weighted
Voronoi diagrams, some regions may be disconnected and consist of more than one face. For instance the
purple region of the site close to the bottom-right corner of Fig. 3(a) consists of two faces. (Several more
disconnected components show up outside of the image frame.)

(a) (b)

Fig. 3: (a) A sample star-induced Voronoi diagram for the sites shown in Fig. 1. Each region is assigned
a unique color and its o�set star is shown. Dashed blackdashed lines show a family of wavefronts.
(b) A sample star-induced skeleton for the same sites. Dashed blue lines are straight-skeleton arcs that
are removed in the post-processing step, solid blue lines are the �nal edges tessellating the planes into
distinct regions, with one connected region per input site. A family of wavefronts is shown for the same
points in time as in (a).

Computing a star-induced Voronoi diagram: For the sake of descriptional simplicity, we start with as-
suming that all additive weights are zero, i.e., that all signals start to spread at the same time. All o�set
stars are scaled uniformly such that no pair of o�set stars overlaps at time t := 1. (This can be done
easily based on the standard Voronoi diagram of the sites.)

We will now take a look at how that portion inside of the wavefront that belongs to a site's region
changes as time progresses. The spreading of the signals starts at time t := 0. At this time, the signal of
each transmitter has not yet spread at all. Hence, at this time, each site's region within the wavefront
only consists of the site itself. By our assumption, at time t := 1 no two signals have yet interfered, and
each site's signal has covered its corresponding o�set star. Of course, intersections of the o�set stars will
occur as time progresses.

To get a hand on these intersections and obtain an actual algorithm for constructing a star-induced
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Voronoi diagram, we lift the entire problem into R3, where the input plane (of R2) is the xy-plane and the
third coordinate represents the time t. Each site's signal is represented by one upside-down, in�nitely tall,
right pyramid whose apex at t := 0 coincides with the site's location. The inclinations of the lateral faces
of the pyramid are chosen such that the intersection of the pyramid with the plane t = 1 matches exactly
the boundary of the o�set star. (The intercept theorem implies that the intersection of the pyramid with
some other plane parallel to the xy-plane yields a polygon that is a mitered o�set of that o�set star.)

Theory knows of a fairly general connection between Voronoi diagrams in Rd and lower envelopes of
suitable distance functions in Rd+1, see [6], which is also applicable to our problem: The lower envelope
of those pyramids projected to the xy-plane or, equivalently, their so-called minimization diagram, yields
our star-induced Voronoi diagram.

One can show that a delay in the start time of the signal of site s can be handled by lifting the
pyramid of s vertically upwards above s: If it is to start at time t′, then its apex lies (vertically above s)
in the plane t = t′. No other modi�cation of this general scheme is needed.

Implementation: We have developed a proof-of-concept implementation of this approach using exact
arithmetic, based on Cgal and, in particular, based on Cgal's 3D Envelopes package [9]. To make it
easier to use existing Cgal code, we chose to use �nite triangles as the lateral faces of our pyramids
instead of in�nitely large ones. Of course, this raised a new problem: How tall is �su�ciently tall� to get
the correct lower envelope and, thus, also the star-induced Voronoi diagram?

To obtain an upper bound we proceed as follows. First, we consider the supporting lines of all the
o�set stars' edges as they move away from their respective stars. At some point in time each supporting
line will have left the bounding box B of the input sites. If we make all pyramids at least this tall,
then every pyramid will cover all of B, and the union of the pyramids' lateral faces projected to the xy-
plane will form a star-shaped polygon with B in its kernel. This implies that the minimization diagram
restricted to B is guaranteed to represent the Voronoi diagram restricted to B. However, using pyramids
of that size does not guarantee that the minimization diagram correctly represents the Voronoi diagram
outside of B, even in places where it is de�ned.

Therefore, as a second step, we also attempt to �nd the latest point in time when a re�ex vertex of
the mitered o�set of an o�set star pierces the supporting plane of any other pyramid face. After this
time we know that the boundary of the minimization diagram will not see new vertices appear even if
we proceed further in time. (There still might be changes as edges of the boundary vanish in edge events
but if need be, these can be dealt with easily.)

We emphasize that the question of how tall the pyramids need to be, respectively how far in time
one has to go with the wavefront propagation, is mostly academic. In practice, we are almost certainly
given a region R of interest for which we are to compute the diagram. And this is easily achieved, since
it su�ces to ensure that R is covered by the projection of each pyramid. Then we can compute the
minimization diagram. And in theory, the algorithms to compute lower envelopes [1] work just �ne with
in�nitely large surfaces, and implementational convenience is of no concern, anyway.

Star-induced skeleton:

In the star-induced Voronoi diagram from the previous section, signals are sent out from sites and then
they spread across the plane without a�ecting each other: Recall that the star-induced Voronoi diagram
may contain disconnected regions, which implies that one signal had to travel over an area already covered
by some other signal. Now we consider a second variant in which the signals do not overlap with each
other. Again, we want to partition the plane into regions according to which site's signal reached a
location �rst. But a signal stops to spread once it reaches a point that has already been covered by
some other signal. This yields a partition of the plane where no region is disconnected. We call it the
star-induced skeleton; cf. Fig. 3(b).
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It can be obtained by applying the theory of weighted straight skeletons [2, 3, 8] of planar straight-line
graphs. In particular, an extended version of a straight-skeleton algorithm by Aichholzer and Aurenham-
mer [2] was implemented recently by the authors' group at Salzburg [7]. It is called Surfer2. We use
Surfer2 and combine it with some pre- and post-processing to obtain the star-induced skeleton.

As in the previous section, consider a set of o�set stars that do not intersect pairwise. We note that
the propagation speed of an edge of an o�set star is proportional to the orthogonal distance of the edge's
supporting line to the corresponding site. This de�nes a weight for every edge of every o�set star. We
use the weighted edges of all o�set stars as input for Surfer2 to compute a straight skeleton of all o�set
stars. In a post-processing step we then merge straight-skeleton faces that come from di�erent edges of
the same o�set star, thus obtaining our star-induced skeleton.

Source code: Our proof-of-concept code is provided on GitHub and can be used freely under the GPL(v3)
license: https://github.com/cgalab/stardist/.
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