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Introduction: 
Shape matching and similarity measurement are vital for many applications, and they are well-studied 
subjects in computer science. Most of the studies focus mostly on 2D images rather than 2D CAD-
geometries. However, similar strategies that are used for images can be applied to the parametric curves 
used in the CAD-geometries. Shape descriptors can be used both for matching shapes and for measuring 
similarities. 

A shape descriptor is a set of numbers that describe a given shape. It should have some essential 
properties, such as identifiability, noise resistance, invariance to translation, rotation, scale, affine 
transform and occultation. Furthermore, the descriptor should be compact to store, and computing the 
difference between the two descriptors should be simple and efficient. [9] 

Shape descriptors can be categorized into three main categories: contour-based descriptors, region-
based descriptors, and hybrid descriptors. The contours-based descriptors use the contour edges for 
generating the descriptor e.g., by sampling points and generating height histograms. These descriptors 
are known to be sensitive to noise in the shape and thus not very accurate. However, their computational 
complexity is low. Region-based descriptors take into account the boundary and the interior of the shape 
e.g., creating 2D histogram by assigning pixels into 2D bins. And hybrid descriptors combine two or 
more techniques. [3] 

Currently, the most performant descriptor for the MPEG-7 bulls-eye test [4] is a hybrid descriptor 
[7], which combines discrete cosine transformation (DCT) [6] and height functions [8] based shape 
descriptors. DCT captures the shape's spatial information, and the height functions capture the 
boundary of the shape as sampled points. 

In this study, a new grid-based shape descriptor is presented, focusing primarily on sheet metal part 
geometries. Grid-based descriptors can belong to either contour-based or region-based. Early grid-based 
descriptors were binary-based matrices [2]. Later, the Blurred Shape Model (BSE) [1] was presented, with 
a matrix containing gray-level values. Most of the descriptors presented earlier are weak in detecting 
exact duplicates and small differences or they lack the ability to take into account multiple contours 
and internal shapes. Comparing e.g., two exact duplicate geometries, but the other one rotated can result 
in lesser or more significant errors depending on the size of the used descriptor vector or sampling 
frequency. 

The descriptor presented here has some similarities to the Blurred Shape Model, but the descriptor 
is computed for the precise CAD-geometry instead of the rasterized image. The new descriptor can 
accurately recognize duplicate geometries and distinguish geometries that have slight differences. Most 
of the other methods use point sampling with a fixed number of points. The new method uses path 
integrals instead, which notices every small detail in the geometry, which could otherwise fall between 
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the sample points when using other methods. The new method also allows search queries for the outer 
and the inner geometries separately or for the whole part. 

Geometry normalization: 
The orientation and the size of the geometry are normalized to allow computing comparable shape 
descriptor matrices. Geometry normalization is done by computing bounding rectangle around the outer 
geometry of the part. Geometry is rotated by the bounding rectangle’s rotation angle 𝜽 and scaled by 
inverse of bounding rectangle’s width 𝒘 and height 𝒉, so that the bounding box of the normalized 
geometry is a unit square with size of 𝟏 × 𝟏. 

Bounding box can be computed in many different ways. In this study two methods were used, 
minimum bounding box and bounding box constructed in the angle of principal axis. These methods 
align bounding boxes in slightly different angles 𝜽. It is beneficial if the bounding boxes are oriented 
nearly in the same angle for shapes that are thought to be similar. 

Shape descriptor matrix: 
The shape descriptor presented in this study is an 𝒏 × 𝒏 matrix containing positive real numbers. We 
will call it Smooth Grid Based Shape Descriptor, later referred to as 𝑺𝑮𝑩𝑺𝑫. 𝑺𝑮𝑩𝑺𝑫 can be considered as 
a 2D dimensional grid, where the (𝒏 − 𝟐) × (𝒏 − 𝟐) innermost cell’s overall size is unit square. Therefore, 

each cell has a size of 
𝟏

𝒏−𝟐
×

𝟏

𝒏−𝟐
. Scaled geometry will fit inside these innermost cells leaving extra cells 

outside of the geometry. These extra cells are used to have even weighting everywhere in the geometry. 
Without the extra cells, the outer geometry would have a smaller impact on the descriptor value. 

The value for each element in 𝑺𝑮𝑩𝑺𝑫 (as seen in equation 1) is calculated by integrating each curve 
in the geometry over the weight function 𝝎(�⃗⃗� ) (as seen in equation 2). 𝒏𝑪 is the number of curves. Each 
curve is defined as parametric curve 𝒓(𝒕), where 𝒕 is parameter within interval [𝒂, 𝒃]. Curve’s end points 
can be calculated when function 𝒓(𝒕) is evaluated at parameters 𝒂 and 𝒃. �́�(𝒕) is the first derivative of the 
curve. 
𝑊 is 𝒏 × 𝒏 matrix containing precomputed center positions for each cell in the 𝑺𝑮𝑩𝑺𝑫 grid. These values 
are used to offset the geometry to the corresponding cell being calculated. 

Function 𝝎(�⃗⃗� ) describes the weight of how much the geometry contributes into the cell value in 
certain position of �⃗⃗� . If the weight function would 𝝎(�⃗⃗� ) = 𝟏, then the integral would result in length of 
the scaled curve. Parameter 𝝓, which we also refer to as spotsize, defines how far away from the grid 
cell center point the geometries accumulate the cell value. Each multiple of 𝝓 increases the bottom 

radius of the weight function by the amount of cell size 
𝟏

𝒏−𝟐
. The function is set to zero when the point 

to be evaluated is further from the cell center point than specified by the parameter 𝝓. Otherwise, the 
function is a cosine function. The cosine function is modified so that the values are always positive 
values between 0 to 1. 

 

∀(𝑖, 𝑗) ∈ [𝑛 × 𝑛] 𝑆𝐺𝐵𝑆𝐷𝑖,𝑗 = ∑ ∫ 𝜔(𝑟𝑐(𝑡) −𝑊𝑖,𝑗) ∙ ‖𝑟�́�(𝑡)‖𝑑𝑡
𝑏

𝑎

𝑛𝐶
𝑐=1     (1) 

𝜔(𝑝 ) =

{
 

 𝑐𝑜𝑠(
𝜋∙‖�⃗⃗� ‖

𝜙
𝑛−2

)+1

2
, ‖𝑝 ‖ <

𝜙

𝑛−2

0, ‖𝑝 ‖ ≥
𝜙

𝑛−2

     (2) 

 
Visualization of this function can be seen in figure 1. The leftmost figure represents rectangular 
geometry, which is integrated over the weight function 𝝎(�⃗⃗� ). The integral is easy to understand as 
surface area of the projected extrusion. The rightmost figure represents the 8 × 8 𝑺𝑮𝑩𝑺𝑫 where weight 
function is plotted for each cell. In this study spotsize of 𝝓 = 𝟏. 𝟓 is used as it gives reasonably uniform 
weight field over the whole grid. Sum of the weight functions is constant on certain cross-sections, 
similarly as the sum of the three-phase electricity. However, on 2D-plane it doesn’t result in perfect 
constant sum, but very close. Note that in the figure, only the individual weight functions are plotted, 
not the sum. 
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Fig. 1: Left – rectangular geometry integrated over 𝜔(𝑝 ). Right - 8 × 8 SGSD weight functions visualized. 

 

Measuring similarity of the shapes: 
The length of the shape descriptor is measured using Manhattan distance (as shown in equation 3). 
Similarly, the difference between the two shape matrices is measured using Manhattan distance (as 
shown in equation 4). In this study Manhattan distance gave much better results than using Euclidean 
distance. Previously also Mahalanobis distance has been used instead of Euclidean distance [5].  
 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐺𝐵𝑆𝐷) = ∑ ∑ |𝑆𝐺𝐵𝑆𝐷𝑖𝑗|
𝑛
𝑗=1

𝑛
𝑖=1      (3) 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑆𝐺𝐵𝑆𝐷𝐴, 𝑆𝐺𝐵𝑆𝐷𝐵) = ∑ ∑ |𝑆𝐺𝐵𝑆𝐷𝐴𝑖𝑗 − 𝑆𝐺𝐵𝑆𝐷𝐵𝑖𝑗|
𝑛
𝑗=1

𝑛
𝑖=1    (4) 

 
The similarity between the two shape descriptor matrices A and B is defined in equation 5. This equation 
gives similarity in range 0 to 1. In the equation, the difference is divided by 2 to avoid negative 
similarities. The difference can be larger than the maximum length of the shape descriptor. This can be 
illustrated by thinking of a part that contains one hole. If the hole is removed from the part, it will result 
in difference that is equal to the sum that the hole contributes to the shape matrix. This would yield to 
inner geometry similarity of 0%. If the hole is moved into a totally separate location in the part, the 
difference would be twice from the previous and yield to negative -100% similarity. Dividing the 
difference by 2 will clamp the similarity between 0 and 100%. Now the previous similarities would be 
50% and 0%. Also using the maximum length as the divider, the order of the parts becomes insignificant 
and the condition in equation 6 is fulfilled. 
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝐺𝐵𝑆𝐷𝐴, 𝑆𝐺𝐵𝑆𝐷𝐵) = 1 −
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑆𝐺𝑆𝐷𝐴,𝑆𝐺𝑆𝐷𝐵)

2⁄

𝑚𝑎𝑥(𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐺𝑆𝐷𝐴),𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐺𝑆𝐷𝐵))
   (5) 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝐺𝐵𝑆𝐷𝐴, 𝑆𝐺𝐵𝑆𝐷𝐵) = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝐺𝐵𝑆𝐷𝐵, 𝑆𝐺𝐵𝑆𝐷𝐴)   (6) 

 
Finally, the shape descriptor matrix A is rotated into four possible angles and the orientation with the 
maximum similarity is chosen. The same is repeated for the mirrored shape descriptor.  

Results: 
The practical tests were done with a part database containing 1150 industrial sheet metal parts. Most 
of the parts were rectangular, containing significant differences in the corner notches. The database 
contained nearly 100 different part families and many unique parts. Testing was done manually as the 
dataset was not classified. When querying first 40 unique parts belonging to different part families, the 
best query matches were every time from the same part family. Approximately 90% of the parts were 
more or less rectangular looking shapes, but they contained specific details that made them identifiable 
to some certain part family group. Unique inner geometry features were queried by drawing a rough 
sketch of the bounding box of the part and the inner feature to be searched. Figure 2 shows two 
examples of the correct query results from the database. 
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Rough query shape 
Best inner geometry match from the 

database 

  

  
 

Fig. 2: Searching by inner features. 
 

Duplicate detection performance was tested with a sample part containing a single hole with a diameter 
of 5 mm (as seen in figure 3). The part was mirrored and rotated, which should yield identical similarities 
for both test cases. For both cases, very small errors were measured. The errors can be explained by the 
numerical noise induced when the geometries were transformed. Then two test cases were done to 
detect different parts. The hole in the part was moved by 50 µm and 1 µm. The measured errors for 
these cases were clearly larger, which means that even slight differences in part geometries can be 
robustly recognized. The scale of the 1µm movement can be illustrated by dividing it by the width of 
the part, which is 553mm. 1µm is approximately 0.00018% of the part’s width. 

 

 
Test 
case 

1 - Original part 2 - Mirrored part 
3 - Rotated 

part 

4 - Hole moved 
a) 50 µm 
b) 1 µm 

Image 

  
 

 

 
Error 

0.00 5.24e-15 5.86e-15 
a) 3.59e-5 
b) 7.19e-7 

 
Fig. 3: Testing duplicate detection robustness. 

 
MPEG-7 database is a well-known benchmark library for comparing shape descriptors [4]. The library 
contains 1400 images belonging into 70 different classes. A bulls-eye test is performed by counting the 
correct query results from the first 40 results. This number is then divided by 20, which is the maximum 
number of correct matches. The graph on figure 4 shows the bulls-eye scores for 70 different classes. 
Average performance was 75.1%, which is similar performance as with Blurred Shape Model (~75% with 
8x8 grid) [1]. For comparison, DCT + height functions hybrid [7], has 91% bulls-eye score. Our methods 
performance in MPEG-7 benchmark was mediocre, but the shapes don’t present typical industrial sheet 
metal parts and the performance with these shapes was secondary objective. 

Computing shape descriptors for MPEG-7 database took 57.6 ms/part on average and the pairwise 
comparison took 0.235 ms on average using AMD Ryzen 3950X processor. Both computations were 
executed using a single thread. 
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Fig. 4: MPEG-7 bulls-eye performance and two samples. 

Conclusions: 
The new descriptor's main benefits are the ability to robustly detect duplicates and distinguish almost 
similar geometries having only a very slight difference. Sheet metal parts belonging to the same part 
family can have only very slight differences. It is useful to be able to compare them quickly by just 
comparing the stored shape descriptor values. A new shape descriptor can also be used for searching 
similar parts according to the outer geometry or the inner geometry separately or for searching for the 
whole geometry. Searching by inner geometry allows searching for some unique internal shape without 
knowing the outer geometry details and vice versa. 

Performance with generic shapes, e.g., MPEG-7 bulls-eye test, could be improved by combining the 
presented method with, e.g., height functions [8], which performs better with the single contour 
geometries having more variety in their shapes in a radial direction. However, for typical sheet metal 
parts, the benefits of being able to detect small differences and being able to make queries with 
internal shapes out weighted the property of finding vastly different but for human eyes similar parts. 
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