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Introduction:

The virtual element method (VEM), introduced in [3] is designed for solving numerical problems defined
on arbitrarily shaped polygonal /polyhedral discretizations. Therefore, it will greatly alleviate the heavy
burden placed on meshing complex CAD geometries when compared with the traditional finite element
method. Furthermore, VEM could handle the non-conforming discretizations by allowing the existence of
hanging nodes, which are treated as normal nodes in the element. The local h-refinement and p-version
refinement could be easily implemented under the VEM framework. So far VEM has been successfully
applied to solve various problems including topology optimization, contact, fracture, plate bending and
vibration, inelasticity.

In this work, we develop an arbitrary order virtual element method for the static bending analysis of
Reissner-Mindlin plates. The transverse displacement and rotations are independently interpolated with
the functions defined in VEM spaces. The interpolation functions for transverse displacement are one
degree higher than the functions for rotations. A benchmark problem is studied to verify the developed
method. The optimal convergence rates for transverse displacement and rotations could be obtained from
the numerical example.

Reissner-Mindlin Plate Problems:

Let © be the domain occupied by the middle plane of an elastic plate with thickness ¢. Let YW and © be
the function spaces for the transverse displacement w and rotations 6(6,, 6,). Then the Reissner-Mindlin
plate problems can be described as: Find w € W, 8 € ©, such that

a(0,m) +b(0 — Vw,n — Vv) = (g,v), VY(v,n) e Wx 0O, (2.1)

where the bilinear forms can be written as

a(0.n) = [ €(0)Dyem)ic (2.2)
b0 — Vw,n — Vv) = / (0 — Vw)' Dy(n — Vv)dQ (2.3)
Q
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in which €(8) = 0.5(V6 + V8”) is the Voigt representation of the strain tensor. D, and D, are the
material bending and shear constitutive matrices.

Virtual Element Spaces and Degrees of Freedom:

Let 75 be a decomposition of the domain 2 into a series of polygons. For each polygon E € T, edges
e € E the local VEM spaces of degree k + 1(k > 1) for the transverse displacement w are defined as

WITHE) = {w), € HY(E) : wp|e € C°(e), wn|p € Pr1(E), Awp|p € Pr_1(E)} (2.4)
with the associated degrees of freedom as follows
- Vertex DOFs: the values of wy, at each vertex of E;

- Edge DOFs: the values of wy, at k internal Gauss-Lobatto quadrature points on each edge of E;

1
- Face DOFs: the moments up to degree k — 1 of wy, in E: E fE wp, - pdE,Np € Pr_1(E).

Let n, be the number of vertices of the polygon E. The dimension of the space W}’jz} is

k(k+1
dim(W}’fH(E)) =n, + kn, + dim(Pr-1(E)) = (k+ 1)n, + % (2.5)
Similarly, the local VEM spaces of degree k for rotations € can be given by
©}(E) = {0n € [H'(E)]* : 0] | € C°(e), 0} |5 € Pr(E), Ab}| e € Prs(E),i = 1,2} (2.6)

with the associated degrees of freedom as follows
- Vertex DOFs: the values of 6, at each vertex of F;

- Edge DOFs: the values of 8, at k — 1 internal Gauss-Lobatto quadrature points on each edge of E;

1
- Face DOFs: the moments up to degree k — 2 of 6}, in E: E fE 0y, - pdE,Vp € Pr_2(E).

Then the dimension of the spaces ©F is calculated as

dim(OF(E)) = 2n, + 2(k — 1)ny + 2dim(Py_1(E)) = 2kn, + k(k — 1). (2.7)

The Projection Operators:

Let IIY be the local projection operator for vertical displacement, mapping the functions from the local
space OF (E) to P(E). Given 0, € ®F(E), the projection operator ITY satisfies:

af(ahap) = G“E(Hyehdp)? VP € Pk(E) (28)

Assume that the function 8} could be expressed by the bases {@;}12; as 0 = Y., ¢,0;,where ng
denotes the total number of basis functions, 6, denotes the unknown rotations at ith DOF. Using the
polynomial functions p, € Pr(E) to express the projected function with IIY ¢, = S."* T} oPgs and

a=1
combining Eqgs. (2.2) and (2.8), a system of linear equation can be written as

ng

af(‘loz?pﬁ) = Zﬂ-ir,aail?(pa’pﬁ)a vpﬁ € Pk<E),V(Pl € QZ(E) (29)
i=1
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The right side term af (Pa» Pg) can be calculated directly and the left side term can be computed by
using the rule of integration by parts as

af (1, 15) = [E ¢ (;) Dye(py)dE = — /E OV Dye(py)dE + | o7 Dye(py)nde, (2.10)

where 7 denotes the unit normal vector to the edges of E. Note that the integrand of the first term in
the right side V Dye(pgs) could be expressed by using polynomials of degree k£ — 2. Then we can compute
the integration according to the predefined face DOFs. The integrand of the second term in the right
side could be expressed by using polynomials of degree 2k — 1 and could be precisely calculated by using
the k + 1 Gauss-Lobatto quadrature points, namely the edge DOFs. Eventually, the coefficient 7, (7; 4)
can be obtained by solving a system of linear equations. Considering the orthogonality condition of the
projection operator ITY, the bilinear form af(0n,my,) is computed by

af(ehﬂ?h) = af(HY@h,HYnh) + af(@h - H'rvgha N — Hynh)a (2.11)

where the first term is called consistent term and the second term is called stability term. Combining
Egs. (2.2) and (2.8), the consistent term can be written as

of(170,.11m,) = 6" 7 { [ (0N,) DN )AE | =0 Ko, (2.12)

and the stability stiffness matrix derived from the stability term is written as
K = 7tr(KS)(I - D,w,)" (I- D,=,), (2.13)

in which 7 is a positive real number and is chosen as 7 = 0.5 according to the recommendation given in
[2]. The matrix D, is constituted by the value of polynomials p; at i-th DOFs as DY = do fi(p;). 9is
the gradient matrix and NN}, is the matrix consisting of polynomials p;.

Next we consider the discrete bilinear form b¥ (0 — Vw,n — Vv), which can be expanded as

bE(8 — Vu,n — Vo) = b (Vw, Vo) — b (Vw, ) — b (6, Vo) + B (6, m), (2.14)

where the first term b/ (Vw, Vo) can be calculated using the similar way for computation of af (6,m),).
The derived consistent stiffness matrix Kj,, and stability stiffness matrix Kj,, are written as

K, = { [ (VN DTN (2.15)
E
bw = Tir(Kp, )(I = Dymy)" (I Dyry) (2.16)

The fourth term bhE (8,m) is computed through an equivalent projection operator 1Y as introduced in
[1], and the derived stiffness matrix Kj, and stability stiffness matrix Kj,. are given as

K = wQT/ (VN,)"D,(VN,)dEw (2.17)
E
o = Ttr(K;,)(I— D)) (I- Dymry) (2.18)

The third term b¥ (0, Vv) is the symmetric part of the second term b (Vw, ), which can be computed
using the rule of integration by parts as

bE(Vw,n) = /annde —/ wl'VndE = wK,,1. (2.19)
e E
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Note that w is a polynomial of k+ 1 and 7 is the polynomial of k. Therefore the term faE wTnnddE can

be obtained by computing the integrations on the k£ + 2 Gauss-Lobatto quadrature points (edge DOFs),

and the term || 5 wTVndE can be calculated by using the face DOFs predefined for the space W,’fl(E).
Eventually the stiffness matrix induced by bilinear forms a(8,,n,,) and b2 (0 — Vw,n — Vv) can be

expressed as

_ sz + ng KH”"

|l K, KK K K|

wr
The external force vector F can be computed using the scheme presented in [5].

K (2.20)
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Fig. 1: Plots of numerical results for the unit square plate under a transverse load. Left: Vertical
displacement w; Middle: Rotation 6,; Right: Bending moment M.

Numerical Examples:

A benchmark problem is studied in this section to verify the developed method on the static bending
analysis of Reissner-Mindlin plates. Consider a clamped unit square plate € [0,1]? subjected to a
transverse load g with the expression

F(z,y) :ﬁ[ny(y —1)(52° =5z + 1)(2y*(y — 1)* + a(z — 1)(5y* — 5y + 1)) (2.21)

+ 12z(x — 1) (59 — by + 1) (222 (z — 1)? + y(y — 1) (522 — 5z + 1))].

The analytical solutions of vertical displacement and rotations could be found in [4]. The material
parameters are taken as: E = 10.92 x 10%,» = 0.3,t = 0.1. Figure 1 shows the color plots of vertical
displacement w, rotation 6, and bending moment M, obtained by using the developed p2 /p? virtual
element method. Here p%t1/pk is used to state that the vertical displacement is interpolated with
functions of degree k + 1 and rotations are interpolated with functions of degree k. The total number of
elements and DOFs are 137 and 3413, respectively.

To investigate the convergence, we first define a Lo-like relative error e}’ for the vertical displacement

(ew)Z — ZEETh fE(wex B Hwh)QdE
" ZEET;L fE ngdE

The error for rotations can be similarly defined by substituting 0 for w. To better describe the mesh size

and compute the errors, we discretize the square plate into structured rectangular mesh. Figure 2 presents

the relative errors e,, and ey, with respect to mesh size h under three cases: p2 /pL,p2 /p2,pt /p3. It can

be found that both the vertical displacement w and rotation 6, could achieve the optimal convergence

rate.

as

(2.22)
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Fig. 2: Relative errors of vertical displacement (Left) and rotation 8, (Right) with respect to mesh size.

Conclusions:

A novel virtual element method is developed for the static bending analysis of Reissner-mindlin plate
by using k-degree functions for interpolation of rotations and (k + 1)-degree for interpolation of vertical
displacement. The numerical results show optimal convergence rates for the vertical displacement and
rotations.
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