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Introduction:

The virtual element method (VEM), introduced in [3] is designed for solving numerical problems de�ned
on arbitrarily shaped polygonal/polyhedral discretizations. Therefore, it will greatly alleviate the heavy
burden placed on meshing complex CAD geometries when compared with the traditional �nite element
method. Furthermore, VEM could handle the non-conforming discretizations by allowing the existence of
hanging nodes, which are treated as normal nodes in the element. The local h-re�nement and p-version
re�nement could be easily implemented under the VEM framework. So far VEM has been successfully
applied to solve various problems including topology optimization, contact, fracture, plate bending and
vibration, inelasticity.

In this work, we develop an arbitrary order virtual element method for the static bending analysis of
Reissner-Mindlin plates. The transverse displacement and rotations are independently interpolated with
the functions de�ned in VEM spaces. The interpolation functions for transverse displacement are one
degree higher than the functions for rotations. A benchmark problem is studied to verify the developed
method. The optimal convergence rates for transverse displacement and rotations could be obtained from
the numerical example.

Reissner-Mindlin Plate Problems:

Let Ω be the domain occupied by the middle plane of an elastic plate with thickness t. Let W and Θ be
the function spaces for the transverse displacement w and rotations θ(θx, θy). Then the Reissner-Mindlin
plate problems can be described as: Find w ∈ W,θ ∈ Θ, such that

a(θ,η) + b(θ −∇w,η −∇v) = (g, v), ∀(v,η) ∈ W ×Θ, (2.1)

where the bilinear forms can be written as

a(θ,η) =

∫
Ω

εT (θ)Dbε(η)dΩ (2.2)

b(θ −∇w,η −∇v) =

∫
Ω

(θ −∇w)TDs(η −∇v)dΩ (2.3)
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in which ε(θ) = 0.5(∇θ + ∇θT ) is the Voigt representation of the strain tensor. Db and Ds are the
material bending and shear constitutive matrices.

Virtual Element Spaces and Degrees of Freedom:

Let Th be a decomposition of the domain Ω into a series of polygons. For each polygon E ∈ Th, edges
e ∈ E the local VEM spaces of degree k + 1(k ≥ 1) for the transverse displacement w are de�ned as

Wk+1
h (E) = {wh ∈ H1(E) : wh|e ∈ C0(e), wh|E ∈ Pk+1(E),∆wh|E ∈ Pk−1(E)} (2.4)

with the associated degrees of freedom as follows

- Vertex DOFs: the values of wh at each vertex of E ;

- Edge DOFs: the values of wh at k internal Gauss-Lobatto quadrature points on each edge of E;

- Face DOFs: the moments up to degree k − 1 of wh in E:
1

|E|
∫
E
wh · pdE,∀p ∈ Pk−1(E).

Let nv be the number of vertices of the polygon E. The dimension of the space Wk+1
h,E is

dim(Wk+1
h (E)) = nv + knv + dim(Pk−1(E)) = (k + 1)nv +

k(k + 1)

2
. (2.5)

Similarly, the local VEM spaces of degree k for rotations θ can be given by

Θk
h(E) = {θh ∈ [H1(E)]2 : θih|e ∈ C0(e), θih|E ∈ Pk(E),∆θih|E ∈ Pk−2(E), i = 1, 2} (2.6)

with the associated degrees of freedom as follows

- Vertex DOFs: the values of θh at each vertex of E ;

- Edge DOFs: the values of θh at k− 1 internal Gauss-Lobatto quadrature points on each edge of E;

- Face DOFs: the moments up to degree k − 2 of θh in E:
1

|E|
∫
E
θh · pdE,∀p ∈ Pk−2(E).

Then the dimension of the spaces Θk
h is calculated as

dim(Θk
h(E)) = 2nv + 2(k − 1)nv + 2dim(Pk−1(E)) = 2knv + k(k − 1). (2.7)

The Projection Operators:

Let Π∇r be the local projection operator for vertical displacement, mapping the functions from the local
space Θk

h(E) to Pk(E). Given θh ∈ Θk
h(E), the projection operator Π∇r satis�es:

aEh (θh,p) = aEh (Π∇r θh,p), ∀p ∈ Pk(E). (2.8)

Assume that the function θh could be expressed by the bases {ϕi}
nd
i=1 as θh =

∑nd

i=1ϕiθ̄i,where nd
denotes the total number of basis functions, θ̄i denotes the unknown rotations at ith DOF. Using the
polynomial functions pα ∈ Pk(E) to express the projected function with Π∇r ϕi =

∑nk

α=1 π
r
i,αpα, and

combining Eqs. (2.2) and (2.8), a system of linear equation can be written as

aEh (ϕi,pβ) =

nk∑
i=1

πri,αa
E
h (pα,pβ), ∀pβ ∈ Pk(E),∀ϕi ∈ Θk

h(E). (2.9)
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The right side term aEh (pα,pβ) can be calculated directly and the left side term can be computed by
using the rule of integration by parts as

aEh (ϕi,pβ) =

∫
E

εT (ϕi)Dbε(pβ)dE = −
∫
E

ϕTi ∇Dbε(pβ)dE +

∫
e

ϕTi Dbε(pβ)n̄de, (2.10)

where n̄ denotes the unit normal vector to the edges of E. Note that the integrand of the �rst term in
the right side ∇Dbε(pβ) could be expressed by using polynomials of degree k− 2. Then we can compute
the integration according to the prede�ned face DOFs. The integrand of the second term in the right
side could be expressed by using polynomials of degree 2k− 1 and could be precisely calculated by using
the k + 1 Gauss-Lobatto quadrature points, namely the edge DOFs. Eventually, the coe�cient πr(πi,a)
can be obtained by solving a system of linear equations. Considering the orthogonality condition of the
projection operator Π∇r , the bilinear form aEh (θh,ηh) is computed by

aEh (θh,ηh) = aEh (Π∇r θh,Π
∇
r ηh) + aEh (θh −Π∇r θh,ηh −Π∇r ηh), (2.11)

where the �rst term is called consistent term and the second term is called stability term. Combining
Eqs. (2.2) and (2.8), the consistent term can be written as

aEh (Π∇r θh,Π
∇
r ηh) = θ̄

T
πTr

{∫
E

(∂Nr
p)
TDb(∂N

r
p)dE

}
πrη̄ = θ̄

T
K
c
aη̄, (2.12)

and the stability sti�ness matrix derived from the stability term is written as

K
s
a = τtr(Kc

a)(I−Drπr)
T (I−Drπr), (2.13)

in which τ is a positive real number and is chosen as τ = 0.5 according to the recommendation given in
[2]. The matrix Dr is constituted by the value of polynomials pj at i -th DOFs as Dij

r = dofi(pj). ∂ is
the gradient matrix and Nr

p is the matrix consisting of polynomials pj .

Next we consider the discrete bilinear form bEh (θ −∇w,η −∇v), which can be expanded as

bEh (θ −∇w,η −∇v) = bEh (∇w,∇v)− bEh (∇w,η)− bEh (θ,∇v) + bEh (θ,η), (2.14)

where the �rst term bEh (∇w,∇v) can be calculated using the similar way for computation of aEh (θh,ηh).
The derived consistent sti�ness matrix Kc

bw and stability sti�ness matrix Ks
bw are written as

K
c
bw = πTw

{∫
E

(∇Nw
p )TDs(∇Nw

p )dE

}
πw (2.15)

K
s
bw = τtr(Kc

bw)(I−Dwπw)T (I−Dwπw) (2.16)

The fourth term bEh (θ,η) is computed through an equivalent projection operator Π0
r as introduced in

[1], and the derived sti�ness matrix Kc
br and stability sti�ness matrix Ks

br are given as

K
c
br = π0T

r

∫
E

(∇Nr
p)
TDs(∇Nr

p)dEπ
0
r (2.17)

K
s
br = τtr(Kc

br)(I−Drπ
0
r)
T (I−Drπ

0
r) (2.18)

The third term bEh (θ,∇v) is the symmetric part of the second term bEh (∇w,η), which can be computed
using the rule of integration by parts as

bEh (∇w,η) =

∫
e

wTηnde−
∫
E

wT∇ηdE = w̄Kwrη̄. (2.19)
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Note that w is a polynomial of k+ 1 and η is the polynomial of k. Therefore the term
∫
∂E

wTηnd∂E can
be obtained by computing the integrations on the k + 2 Gauss-Lobatto quadrature points (edge DOFs),
and the term

∫
E
wT∇ηdE can be calculated by using the face DOFs prede�ned for the space Wk+1

h (E).
Eventually the sti�ness matrix induced by bilinear forms aEh (θh,ηh) and bEh (θ−∇w,η−∇v) can be

expressed as

K =

[
K
c
bw +K

s
bw Kwr

K
T
wr K

c
a +K

s
a +K

c
br +K

s
br

]
. (2.20)

The external force vector F can be computed using the scheme presented in [5].

Fig. 1: Plots of numerical results for the unit square plate under a transverse load. Left: Vertical
displacement w; Middle: Rotation θx; Right: Bending moment Mx.

Numerical Examples:

A benchmark problem is studied in this section to verify the developed method on the static bending
analysis of Reissner-Mindlin plates. Consider a clamped unit square plate Ω ∈ [0, 1]2 subjected to a
transverse load g with the expression

f(x, y) =
E

12(1− ν2)
[12y(y − 1)(5x2 − 5x+ 1)(2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1))

+ 12x(x− 1)(5y2 − 5y + 1)(2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1))].

(2.21)

The analytical solutions of vertical displacement and rotations could be found in [4]. The material
parameters are taken as: E = 10.92 × 106, ν = 0.3, t = 0.1. Figure 1 shows the color plots of vertical
displacement w, rotation θx and bending moment Mx obtained by using the developed p3

w/p
2
r virtual

element method. Here pk+1
w /pkr is used to state that the vertical displacement is interpolated with

functions of degree k + 1 and rotations are interpolated with functions of degree k. The total number of
elements and DOFs are 137 and 3413, respectively.

To investigate the convergence, we �rst de�ne a L2-like relative error e
w
h for the vertical displacement

as

(ewh )2 =

∑
E∈Th

∫
E

(wex −Πwh)2dE∑
E∈Th

∫
E
w2
exdE

. (2.22)

The error for rotations can be similarly de�ned by substituting θ for w. To better describe the mesh size
and compute the errors, we discretize the square plate into structured rectangular mesh. Figure 2 presents
the relative errors ew and eθx with respect to mesh size h under three cases: p2

w/p
1
r, p

3
w/p

2
r, p

4
w/p

3
r. It can

be found that both the vertical displacement w and rotation θx could achieve the optimal convergence
rate.
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Fig. 2: Relative errors of vertical displacement (Left) and rotation θx (Right) with respect to mesh size.

Conclusions:

A novel virtual element method is developed for the static bending analysis of Reissner-mindlin plate
by using k-degree functions for interpolation of rotations and (k + 1)-degree for interpolation of vertical
displacement. The numerical results show optimal convergence rates for the vertical displacement and
rotations.
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