
177

Title:
GPU-Accelerated Post-Processing and Animated Volume Rendering of Isogeometric

Analysis Results

Authors:
Harshil Shah, harshil@iastate.edu, Iowa State University
Xin Huang, ryan125@iastate.edu, Iowa State University
Onur Rauf Bingol, orbingol@iastate.edu, Iowa State University
Manoj R. Rajanna, manoj95@iastate.edu, Iowa State University
Adarsh Krishnamurthy, adarsh@iastate.edu, Iowa State University

Keywords:
Volumetric spline, Ray intersection, Isogeometric analysis post-processing, GPU-accelerated geometric
algorithm, Animated volume rendering, Ray-casting, FSI, Biomechanics

DOI: 10.14733/cadconfP.2021.177-181

Introduction:

Isogeometric analysis (IGA) [1] has enabled better CAD integration by using the same spline represen-
tations (Non-Uniform Rational B-Splines, NURBS) for modeling and analysis. Traditionally, the �nite
element analysis results are visualized by creating a texture map of the property of interest and super-
imposing them over the boundary representation (B-rep) model or the mesh. This technique cannot be
directly used to render internal quantities of interest without computationally intensive sectioning and
remapping of the textures, which does not allow for interactive interrogation of the analysis results.

Ray-casting is usually used to render volume data and is computationally more intensive than raster-
ization. Performing ray casting with volumetric splines used in IGA is still computationally intensive to
perform interactively. In this work, we �rst voxelize the isogeometric mesh using a GPU-accelerated ray
intersection algorithm for cubic-Bézier volumes to convert volumetric splines to time-varying voxelized
data structures. We then use GPU ray casting to volume-render the time frames of the simulation. This
approach leads to interactive volume rendering of the results of dynamic IGA simulations, allowing for
real-time manipulation in the 3D environment.

One of the early algorithms to compute ray intersection with surfaces can be found in [2], where they
reduce the ray-surface intersection to computing roots of a polynomial. [4] presented the Newton iteration
technique that uses subdivisions of a surface to compute all the roots for the ray-surface combinations.
[3] developed a method to decompose the NURBS surfaces into Bézier patches and then perform the
triangulation of the surface for rendering. However, most of these previous approaches were not fast
enough for animated volume rendering or mainly rendered the analysis results on surfaces as textures.

To voxelize the IGA models, we �rst decompose the NURBS elements into Bézier elements by per-
forming Bézier extraction. This is required to deal with the non-uniformity of the knot vector in a general
NURBS element. We then perform a modi�ed ray intersection test with the six Bézier surfaces of the
element using a grid of rays. We then generate a variable density voxel model representing the analysis
results using the intersection data, which is repeated for the di�erent time frames of the analysis. The

Proceedings of CAD'21, Barcelona, Spain, July 5-7, 2021, 177-181
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


178

IGA results (k)

CPU GPUData

Extraction to Bezier
patches (b)

Element
Bounding Box (c)

Control Mesh
triangulation (f)

Intersection
map (h)

Infill
map
 (i)

Global Box with voxels (d)

Ray Grid (e)

Volume Rendering (j)

NURBS Model (a) Initial parameter
computation

Ray-Box 
intersection test

Newton Iteration (g)

Fig. 1: Di�erent steps of our approach for animated volume rendering of isogeometric analysis results.

complete time-series data is then rendered using GPU-accelerated ray casting. This direct voxelization
technique enables a detailed analysis of the simulation using interactive slicing techniques without compu-
tationally intensive post-processing. We demonstrate this approach for two biomechanics simulations�a
cardiac solid mechanics model and an aorta �uid structure interaction (FSI) model.

Methodology Overview:

Our method to render the results of dynamic IGA simulations involves �rst voxelizing the deforming
NURBS volumes. We perform GPU-accelerated ray intersection with the element surfaces using a modi-
�ed Newton method (Fig. 1(g)). We compute the initial parameters of the Newton method by performing
ray intersections with the surface control mesh. We generate a boundary voxel model from the intersec-
tion data(Fig. 1(h)). Once all the boundary voxels have been identi�ed, we perform an in�ll operation
along the ray (Fig. 1(i)). Finally, the value corresponding to the IGA results is assigned to the voxel,
which is repeated for all time frames(Fig. 1(j)). After voxelizing all the frames, we use a GPU-accelerated
volume rendering method to animate the results of the simulations interactively.

Ray Intersection with Bézier Elements:

Performing a ray intersection test directly on the NURBS element is computationally intensive due to
the non-uniformity of the knot vector and the rational nature of the surfaces. To improve the e�ciency
of the process, we �rst extract the six NURBS surfaces of each NURBS volume element, each represented
using the (u, v) parametric space. We then decompose each knot span of the NURBS surface into Bézier
patches. (Fig. 1(b)). We compute a bounding box for each Bézier patch and a global bounding box for
the model (Fig. 1(d)). We create a voxel grid around the model using the global bounding box based on
the desired voxelization resolution (Fig. 1(e)), with the individual voxel centers as the ray origin.

Proceedings of CAD'21, Barcelona, Spain, July 5-7, 2021, 177-181
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


179

We use a modi�ed Newton method to �nd the intersection of the ray with the parametric surface.
Finding an initial parameter closer to the solution reduces the number of iterations of the Newton method.
We compute this initial parameter by �nding the intersection with the control mesh of each Bézier
element. We triangulate the control mesh (Fig. 1(f)) and perform a line-plane intersection. A ray
can have multiple intersections with a single surface patch, which we account for by obtaining multiple
unique initial parameters using the line plane intersection between a single ray and di�erent triangles
of the control mesh. We then calculate the surface parameters (u, v) and the ray parameter t of the
intersection point as the initial parameters.

dist [S(u, v), R(t)] < ε

S(u, v) =
pu∑
i=0

pv∑
j=0

Bi,pu
(u)Bj,pv

(v)Pi,j

R(t) = o+ d ∗ (t)

(2.1)

The objective function is the distance between surface points on a Bézier element corresponding to
the parameters (u, v) and point on the ray corresponding to the parameter t (Eqn. (2.1)). Here Bs are
the Basis functions, and P s are the control points of the Bézier surface. O and d are the origin and
direction of the ray, respectively. The parameters are updated using the Newton method, which has a
second-order convergence rate. We modi�ed the update equation to incorporate the parametric ray (Eqn.
(2.2)). To avoid missing any potential intersection point, we also perform the intersection test on the
triangles formed by control points of the individual surface edges. There is a possibility that we may
compute an intersection point multiple times. We make use of the ray parameter t to identify and remove
these repeated intersections. t

u
v


n+1

=

 t
u
v


n

− [J ]
−1

 Sx(u, v)−Rx(t)
Sy(u, v)−Ry(t)
Sz(u, v)−Rz(t)



where J =

 −dRx(t)
dt

dSx(u,v)
du

dSx(u,v)
dv

−dRy(t)
dt

dSy(u,v)
du

dSy(u,v)
dv

−dRz(t)
dt

dSz(u,v)
du

dSz(u,v)
dv


(2.2)

Voxelization and In�ll Operation:

Based on the intersection data, we generate a voxelized model with boundary element(Fig. 1(h)). These
voxels are assigned the value of the element to which the intersection point belongs. A single voxel
may contain the intersection that occurs at the boundary or the common surface between two ele-
ments(Fig. 2(left). Parallelizing the intersection test among the elements might result in a race condition,
where multiple threads may write di�erent element index values at the same voxel memory location. To
account for multiple elements in a voxel and avoid the race condition, we serialize the voxelization and
in�ll operation using an element for loop inside the GPU kernel. We perform a marching operation along
the ray to identify the entry and exit voxel for the same element. We then �ll the intermediate voxels
with the same element value to get a �lled voxelized model (Fig. 2)(right).

Interpolation of IGA Results:

The IGA results are usually computed at speci�c feature points such as the control points or the Gauss
points. These values are interpolated to the voxel center using Shepard's inverse distance weighting. This
method is ine�cient in skewed elements or elements with a large number of feature points. In such cases,
we compute the closest feature point to the voxel center and assign its value. This approach is faster

Proceedings of CAD'21, Barcelona, Spain, July 5-7, 2021, 177-181
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


180

Fig. 2: Left: Boundary voxelization with a detailed view of the interface; Right: A slice of �lled voxelized
model with respective elements.

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Frame 1 Frame 2 Frame 3

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0

Fig. 3: Voxelized time frame data represented using a �at data structure in the GPU memory.

and gives visually accurate results for high-resolution models. The values assigned to the voxel center are
normalized to create a variable density model.

Animated Volume Rendering:

Finally, to animate the volume rendering, the 3D voxelized structure for each frame is converted into a
�attened array (Fig. 3) for storing in the GPU memory. This method facilitates using a linear memory
location for storing all the time frames, and the voxelization size is used to set the stride. The volume
rendering is performed using a GPU voxel ray-casting algorithm, where each pixel on the screen corre-
sponds to a single ray (pixel resolution rendering). The voxelization is then sampled along the ray using
a user-de�ned pitch. The average density along the ray is then used to calculate the pixel color.

Results:

We show the performance of our method on two di�erent types of models for multiple voxelization
resolutions (Tab. 1). The cardiac model consists of cubic Bézier volume elements and includes the strain
tensor values for 200 time frames. The aorta FSI model consists of quadratic NURBS and the IGA results
de�ned on the control points for 161 time frames. As we can see in Tab. 1, our approach can generate a
voxelized model for the entire simulation within a few seconds. In addition, while volume rendering the
results, we can maintain a consistent frame rate of over 30fps throughout the animation. Fig. 4 shows a
couple of frames from the animated volume rendering output for both models. The animation can also
be dynamically sectioned without a�ecting the overall frame rate.

Proceedings of CAD'21, Barcelona, Spain, July 5-7, 2021, 177-181
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


181

Table 1: Timing data for voxelization and rendering of the Cardiac and the Aorta model

Resolution
Cardiac Model Aorta Model

Processing

time (s)

Ray Intersection

Time (s)

Total time

(s)

Frame Rate

(FPS)

Processing

time (s)

Ray Intersection

Time (s)

Total time

(s)

Frame Rate

(FPS)

64R 0.686 0.786 1.472 39.9 1.884 2.660 4.544 35.5

128R 2.870 3.558 6.440 36.7 5.093 18.172 23.266 35.3

256R 24.13 20.873 45.046 49.9 32.336 133.673 166.009 36.1

Frame 1 Frame 80Strain
-0.4

0.4

Velocity (cm/s)
0.0

400

Frame 60 Frame 100

Fig. 4: Left: Rendering of von-mises strain for Heart model, Right: Rendering of velocity of Aorta mode.

Conclusions:

We have developed a framework to animate the results of dynamic isogeometric analysis. This ap-
proach uses ray intersections to convert volumetric splines to a time-varying voxel representation. The
time-varying voxel models are then volume rendered using GPU-accelerated ray casting to animate any
property of interest from the IGA simulations. The animation can be interactively sectioned to study
the quantities of interest in greater detail without compromising the frame rates. Our approach allows
interactive interrogation of the IGA results that can yield valuable insights into the physical simulation.

Acknowledgements:

We would like to thank Dr. Hsu at Iowa State University for providing the Aorta model. This work was partially

supported by NIH R01HL131753, NSF 1750865, and NVIDIA.

References:

[1] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y.: Isogeometric analysis: CAD, �nite elements, NURBS, exactge-
ometry, and mesh re�nement, Computer Methods in Applied Mechanics and Engineering, 194(39-41), 2005,
4135-4195. https://doi.org/10.1016/j.cma.2004.10.008

[2] Kajiya, J.T: Ray tracing parametric patches, SIGGRAPH, 116(3), 982, 245-254.
https://doi.org/10.1145/800064.801287

[3] Kumar, S.; Manocha, D.: E�cient rendering of trimmed nurbs surfaces, Computer-Aided Design, 27(7), 1995,
509-521. https://doi.org/10.1016/0010-4485(94)00003-V

[4] Toth, D.: On Ray Tracing Parametric Surfaces, ACM SIGGRAPH Computer Graphics, 19(3), 1985, 171-179.
https://doi.org/10.1145/325334.325233

Proceedings of CAD'21, Barcelona, Spain, July 5-7, 2021, 177-181
© 2021 CAD Solutions, LLC, http://www.cad-conference.net

https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1145/800064.801287
https://doi.org/10.1016/0010-4485(94)00003-V
https://doi.org/10.1145/325334.325233
http://www.cad-conference.net

