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Introduction: 
In contemporary manufacturing, the increasing developments and over-exploitation of resources result 
in numerous “end-of-life” products. However, the products have not been used thoroughly, and their 
product life-cycle can be extended by remanufacturing or repair process. It has been widely 
emphasised because it enables the remanufactured product to be sold as a new product and also 
maintains the intrinsic energy of the “end-of-life” product without creating redundant energy. It is 
reported that remanufacturing reduces cost by 50%, energy by 60%, material by 70% and air pollution 
by 80% as compared to a conventional manufacturing process [5].  

Although significant benefits can be gained from remanufacturing/repair, there are still numerous 
challenges to implement it in industry. One of the reasons is that, compared to manufacturing process, 
stochastic returns of used part and their uncontrollable quality condition result in a high degree of 
uncertainty for remanufacturing process [6]. The uncertainty surrounding the return of the parts 
complicates the remanufacturing process. Recently, great efforts have been devoted to the 
remanufacturing process plan optimization with uncertainties [5,8]. These optimization frameworks 
are initialized with characterized and quantified fault features (e.g. crack, dent, scratch, abrasion). 
Visual or manual inspection determines the fault feature characterization which indicates damage 
type, damage location and damage degree. These three factors play a key role to generate an optimal 
process plan with different additive operations (e.g. chromium plating, arc welding, cold welding, laser 
cladding, thermal spraying) and subtractive operations (e.g. milling, grinding) with heuristic algorithms. 
The current visual or manual inspection methods require extensive human intervention, and quality of 
process is hard to be stable. Therefore, an automated inspection approach for remanufacturing is 
urgently demanded. For this reason, an increasing level of interest in research on the automated or 
semi-automated inspection for remanufacturing or repair has been witness over recent years [2,8,9,10]. 
By summarizing these research results, to the best of the authors’ knowledge, an automatic approach 
which enables damage recognition and spatial localization simultaneously for remanufacturing has 
not been discovered. In this study, a deep learning-based damage recognition and spatial localization 
method is proposed, which can classify different damage features and localize in the global three-
dimensional coordinate.  

Main Idea: 
The main objective of this study is to automatically detect damages from a remanufacturing part. The 
study proposes a detection strategy based on a deep-learning technique to recognize and localize 
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damages. The flowchart is shown in Fig. 1. There are four main steps of the process: (1) Data 
acquisition for the RGB image and depth data by a depth camera; (2) the damage recognition and 
segmentation using a Mask-RCNN-based method, providing damage segments with recognized damage 
type; (3) the localization of the damage determined by the integration of damage segments and point 
cloud from the depth data. 
 

 
 

Fig. 1: The flowchart of the proposed method. 
 

In this study, the damage recognition and segmentation method is based on a Mask-RCNN architecture 
[3]. The proposed damage recognition and segmentation method is illustrated in Fig. 2. As shown, it is 
composed of four modules: (1) Input the original image to be processed into a pre-trained 
convolutional backbone to extract features and to obtain a feature map; (2) the region proposal 
network (RPN) proposes region of interest (RoI) in the feature map with a set of rectangular object 
proposals; (3) each RoI  generates a fixed size feature map by RoIAlign layer; (4) the fixed size feature 
map goes through two branches of layers for objective classification, frame regression and pixel 
segmentation. 

 

 
 

Fig. 2: The neural network architecture of the proposed damage recognition and segmentation method. 
 

Convolutional backbone is composed of a series convolutional neural network (CNN) to extract feature 
maps from the image. The properties of a neural network backbone are characterized by selection and 
arrangement of different layers. Deeper networks generally allow to extract more complicate features 
from the input image, meanwhile stacking more layers will result issues for training, due to 
degradation problem. The residual network (ResNet) was designed to address this problem in deeper 
neural networks (up to 152 layers) [4] by reformulating its layers as residual learning function with 
reference to the layer input. A block of the ResNet can be mathematically represented in Eq. (1). 
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where 
lx  and 

1lx are the l-th layer’s input and output respectively; ()F represents the residual 

mapping to be learned.  

From l-th layer to L-th layer for the feature learning can be represented as: 
1

,
L

L l i i

i l

x x F x W  (2) 

The gradient for the loss function at l-th layer can be derived by chain rule of backpropagation: 

1 1
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L L
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i i i i
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xLoss Loss Loss Loss Loss
F x W F x W

x x x x x x x x
 (3) 

Eq. (2) and (3) imply that the signal can be directly propagated from any unit to another, both forward 
and backward.  

Generally, Mask RCNN model adopts ResNet101 as the backbone. It is a very deep network with 
101 layers and approximately 27 million parameters. In this study, because the damage category is 
simple and the dataset is limited, a smaller backbone ResNet50 is used to improve the running speed 
for training. Feature pyramid network (FPN) [7] uses a top-down architecture with lateral connections 
to build an in-network feature pyramid, which address the multi-scale object recognition problem. 
Overall, this study uses the combination of ResNet50 and FPN as the backbone for feature extraction. 

The second module in the proposed damage detection and recognition is RPN. The original image 
passes through the ResNet50 and FPN convolutional network and outputs a set of convolutional 
feature maps. Then, a sliding window runs over the feature maps. In each sliding windows, multiple 
region proposals are predicted based on a predefined number of anchor box. An anchor box is a 
reference box with a set of scales and aspect ratios and in centered at the sliding windows. A proposed 
area can generate a large number of anchors with different sizes and aspect ratios, and they overlap to 
cover as many areas as possible. In this study, the algorithm uses 9 different sizes of anchors as 
(128*128, 256*256, 512*512) with aspect ratios of (1:1, 1:2, 2:1). Positive or negative anchors are 
computed by considering the interest-over-union (IoU) between the analyzed anchor and ground-truth 
bounding boxes on the image. The IoU is calculated by Eq. (4). In this paper, positive anchors are those 
that have an IoU is greater or equal to 0.7 ith any ground-truth object and negative anchors are those 
have IoU is smaller or equal to 0.3. The anchors with IoU between 0.3 and 0.7 are not considered for 
the training objective. The positive anchors are then process to the proposal classification.  

 

  
 

Fig. 3: Region Proposal Network (RPN) of the proposed method. 
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 where overlapA  is the area of overlap and 
unionA  is the area of union. 

(4) 

In the Mask-RCNN model, the mask branch must determine whether a given pixel is inside the 
target in a pixel level accuracy. However, the original image has been already convolved and pooled 
which results in size changes. Therefore, the interest-region alignment layer (RoIAlign) [7] is used to 
help image target be accurately positioned. In RoIAlign, the bi-linear interpolation method is 
implemented to calculate the exact position of the sample points in each unit, retaining its decimal, 
and the uses the maximum pooling or average pooling operation to output the last fixed-size ROI. 
RoIAlign calculate the value of each sampling point by bi-linear interpolation method from the nearby 
grid points on the feature map. Finally, the maximum pooling or average pooling operation is 
performed to obtain the feature map of fixed size.  

The multi-tasking loss function of the Mask R-CNN training process is defined in Eq. (5), where L  

is the training total loss; clsL  is the classification loss, boxL  is the bounding-box loss, and maskL  is the 

mask loss.  

cls box maskL L L L  (5) 

The variables for 
clsL and 

boxL are defined in [1], as shown in Eq. (6). Each training RoI is labeled 

with a ground-truth class u  and a ground-truth bounding-box regression target v . 

, 1 ,ucls box cls locL L L p u u L t v  (6) 

where u  is the label of each training RoI with a ground-truth class; v  is a label of each RoI with a 

ground-truth bounding-box regression target; ut  specifies a scale-invariant translation and log-space 

height/width shift relative to u  class;  0,..., Kp p p represents the probability distribution over 

1K categories; 1u denotes the Iverson bracket indicator function that evaluates to 1 when 

1u and 0 otherwise. 

The maskL is calculated by taking the average cross entropy of the all pixels on the RoI, as: 

1
ln 1 ln 1mask i i i iL y a y a

N
 (7) 

where
ix and 

ib  are the prediction value and true value of the i-th pixel in the positive RoI, respectively;  

N indicates the number of pixels in the positive RoI. 
 

In this study, spatial localization of the damage area is achieved by finding the mapping relations 
between the 2D coordinates in image and 3D spatial coordinates by the depth sensor model, as shown 
in Eq. (8). 
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where u  and v  are the 2D image coordinates; 0u  and 0v  are the origin of the 2D coordinate system; xf  

and yf  are the focal length along x  and y  direction, respectively; z y zR R R  and T  are the rotation 

matrix and translation matrix from the camera coordinate system to the global coordinate system, X , 
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Y , Z are the 3D coordinates under global coordinate. To simplify this problem, the authors coincides 
the camera coordinate system and the global coordinate system. Then, the 3D coordinates of the 

damage area can be calculated as: 
0 0; ;c c

c
x y

u u z dx v v z dy
X Y Z z

f f
 

Conclusions: 
Remanufacturing has been considered as an eco-industry, demonstrating environmental and economic 
benefits. Damage feature inspection is a critical and step in remanufacturing, which establishes the 
connection between used part and process planning. However, the current inspection method for 
remanufacturing heavily relies on manual operations. In this study, a deep learning-based damage 
recognition and spatial localization method is developed. The damage recognition method is based on 
a Mask-RCNN model to output damage type, 2D damage segments. By mapping the 2D pixel 
coordinate to 3D global coordinate system, the spatial coordinate of damage is calculated. With 
identifying and positioning damages, further automatic repairing/remanufacturing processes can be 
operated based on these results. 
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