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Introduction: 
A porous medium is a solid material that consists of uniformly or randomly distributed pores or voids. 
Porous materials have a wide range of applications such as heat exchangers, energy damping equipment, 
filtration, sound absorption, artificial skin and scaffolds. Parameters affecting the geometry and 
topology of porous structures are pore size, pore shape, pore distribution, pore interconnectivity, 
porosity, specific surface area and strut thickness. Physical properties of interest to applications include 
permeability, effective thermal conductivity, compressive strength, electrical conductivity, damping 
capacity and tortuosity. Design and modelling of porous structures is very complex in nature, which 
virtually rules out the possibility of analytical approaches to design porous structures given desired 
properties. Experimentation and in recent years, computer aided techniques (i.e. numerical simulation) 
are utilized to find optimum porous materials for any given application. Yet, both techniques have 
shown cost-efficiency disadvantages. Topology optimization offers a distinctive benefit of determining 
a feasible solution for this problem; however, it has an inherent drawback in terms of computational 
cost because of many design variables and iterations [7]. Optimization algorithms, like the ones used in 
machine learning, have proven to be an alternative tool when dealing with large data and finding an 
empirical model in the absence of a physics based one. Even though the use of machine learning is a 
well-established technique in other fields, its application in engineering applications is relatively new. 
In this paper we explore the use of machine learning to obtain a model to predict geometry of porous 
material for prescribed physical properties.  

A numerically simulated data set is employed by a Machine Learning technique in order to establish 
a relationship between the input parameters (Permeability and Effective Thermal Conductivity) and the 
output parameters (Porosity, Number of Pores, Pore Shape). The results obtained from the analyses are 
compared with simulated results from computational models. To maintain right balance of properties 
needed for specific engineering application, multifunctional porous materials are necessary along with 
the correct selection of appropriate porous structure geometry. 
 

Literature Review: 
In literature, different ways have been attempted to represent and model porous structure like unit cell 
method, where a ‘unit cell’ refers to a representative pore structure of the inner architecture of the 
porous object [13]. A design strategy has been developed for eventual fabrication of porous titanium 
structures with periodic cellular structures targeted to biomedical applications [9].  Re-creating porous 
structures from actual micro-CT images [10] have been attempted.  A representation of model density 
and porosity based on stochastic geometry was introduced and used to create CSG based models of 
heterogeneous objects [12].  Limitations of these methods include difficulty in modelling porous 
structures with intricate shapes, resulting in huge file size of a CAD model and, need for an existing 
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porous object for image reconstruction methods. Boolean operations in stochastic geometry approach 
consume more time and computing capacity. There are no formal methods to represent a 3D porous 
structure. Most importantly, there is no predictive control over geometrical properties in any these 
methods. Convolutional Neural Networks (CNN) have been used to provide a quick assessment of 2D 
slices of rock images by estimating permeability-correlated properties like porosity, average pore size, 
and coordination number from greyscale micro-CT images [2]. Synthesizing a porous structure from a 
given set of desired physical attributes/properties has not been attempted.  

Problem Statement and Methodology: 

Given a porous object, methods to characterize and extract the physical properties using experimental 
techniques is well established. But given the properties, methods to arrive at the appropriate porous 
structure is not known. Proper correlation between the physical properties and geometrical parameters 
will lead us to parameterize porous structures easily. Complicated and conflicting relations between 
geometrical parameters and physical properties make it difficult to solve this problem. Our eventual 
objective is to develop a CAD based representation technique based on geometric and topological 
modelling approaches to develop complex pore structures based on their field of application thereby 
ensuring feasibility of manufacturing of developed models by additive manufacturing techniques. Our 
main objectives are 

• A tool to model and represent porous structures given functional characteristics prescribed by 
the designer 

• Derive a CAD model of the porous structure that can be used to realise it through additive 
manufacturing 

In this paper the focus is on the first objective. 

 

Figure 1: Forward Problem and Inverse Problem 

 

Forward Problem: Characterization of physical properties of porous object 

Inverse Problem: Design of porous structure for prescribed physical properties 

 

A dataset of 213 CAD models of porous structures were created using Grasshopper [6], a visual 
programming language and environment that runs within the Rhinoceros 3D CAD application [11]. The 
corresponding physical properties extracted using COMSOL Multiphysics [5] are targets for the training 
deep learning model. TensorFlow [14], end-to-end open source platform for machine learning is used as 
our deep learning architecture. Keras [8], an open source neural network library that runs on top of 
TensorFlow is utilized to train our deep learning model. Geometrical parameters like porosity, number 
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of pores, shapes of pores are fed to a deep learning model as target and computed physical properties 
such as Permeability and Effective thermal conductivity as an input for the training stage of the model. 

     The effective thermal conductivity 𝑘𝑒 is calculated as a function of thermal conductivity of solid 
phase 𝑘𝑠 and of fluid phase 𝑘𝑓 and volume content of each phase or porosity. The mechanism of heat 

transfer in porous materials is complicated by the irregularity of the internal structure and heat is 
propagated by thermal conduction through the solid phase and fluid phase, radiation between solid 
particles and convection in the fluid phase.  

    Permeability is the property of a porous medium that describes its ability to allow fluid to pass 
through it. The basic law governing the flow of fluids through porous media is Darcy’s Law which 
establishes the relation between the pressure drop and flow rate.  

𝑄 =
κA(p𝑏 − p𝑎)

µ𝐿
 

(1) 

Where, 𝑄 is Volume flow rate, κ is Permeability, A the cross-sectional area, µ the dynamic viscosity of 
the fluid, p is the Pressure and 𝐿 is length over which the pressure drop is taking place.  

 

  
 

Fig. 2: Overview of the Workflow of Machine Learning Process 
 
Sequential modelling is used in Keras. First inputs and targets are transformed using MinMaxScalar with 
feature range of -1 to 1. The network consists of one hidden layer of 10 neurons with the Rectified Linear 
Unit (RELU) activation function [1]. Target Layer is passed through ‘Linear’ activation function because 
our problem is a regression problem. We use mean square error to calculate the error between calculated 
and predicted values from the network. After calculating the error, we use RMSPROP optimizer [4] to 
update the network weights and biases of layer. Train_test split approach is used for cross validation 
with 80% of the data for training and 20% for testing. Batch size of 30 is kept and 500 epochs are run. 
An epoch of training is completed when the whole training dataset has been fed into deep neural 
network.  
     Predicting shape of the pore is a multi-class classification problem. One hot encoding is performed 
on data to perform the multiclass classification. Fully connected network with one hidden layer that 
contains 8 neurons with RELU activation function and target layer is passed through ‘Softmax’ [3]. Adam 
gradient descent optimization algorithm [4] with a logarithmic loss function (categorical_crossentropy) 
is used to train the network. K- fold cross validation is used. 
     In the above analysis we have built two different deep learning architectures for regression problem 
and classification problem. Regression analysis is used to predict porosity and number of pores and 
multi-class classification is used to predict the shape of the pores. Combining both regression and 
classification problems in a single deep learning is complicated because the target layer will contain both 
the outputs (i.e. regression and classification) and assigning different activation functions for these 
targets is difficult.           
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Results and Discussion: 
Supervised machine learning algorithm (linear regression) was performed in order to predict geometric 
parameters of porous structures with physical properties based on the application being inputs to the 
learning algorithm  

 
Fig. 3: Plot of porosity for actual vs predicted values. 

 
Fig. 4: Plot of number of pores for actual vs predicted values. 

 
Results in figures 3 and 4 show that deep neural network predictions are very close to the actual values 
and from figures 5 and 6 we can see that the deep neural network accuracy improves, and model loss 
reduces as more training epochs are completed and the neural network weights and bias are updated.  
The error between predictions and the actual values for porosity is very less compared to the number of 
pores. Mean squared error (MSE) for porosity and permeability are approximately 0.003 and 190 
respectively. 
      From figure 3 and 4 we can see that the error for predicting porosity is very low compared to 
predicted values of number of pores because effective thermal conductivity is strongly related to 
porosity, which is in agreement with the literature. Permeability of porous structures is usually expressed 
as function of interconnected pore system such as porosity and tortuosity. We have considered one of 
the most widely accepted and simplest models for the permeability-porosity relationship, Kozeny-
Carman model (equation 1), hence the prediction of porosity is performed with least error. As effective 
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thermal conductivity and permeability are input and porosity is one of the targets, the deep neural 
network can exactly correlate the input-target relationship. 
      But the error in the predictions of number of pores is large because the correlation between effective 
thermal conductivity and permeability with number of pores is not exactly known. It is also possible that 
the deep learning model may require more data to make the estimations of number of pores with 
minimum error. 

 
Fig. 5: Model accuracy during training and testing. 

 

 
 

Fig. 6: Average epoch loss during training and testing. 
 
K-fold cross validation with 10 folds is used. Accuracy is 49.21% of mean and 9.75% of standard 
deviation.        
     The datasets used in this study are small compared to the number used typically in deep learning. As 
availability of data is likely to be restricted, one direction to explore is how convergence in deep learning 
can be enhanced for relatively smaller data sets. As mentioned earlier the data regarding physical 
properties were obtain through numerical computation (COMSOL Multiphysics). While these values do 
represent true values in present practice, it is necessary to validate the results through actual 
prototyping of the porous structures and testing. 
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Conclusion: 
Regression and multi-class classification machine learning models are used for estimating geometrical 
parameters of porous structure given physical properties based on application mentioned is presented 
in this paper. A dataset was created with physical properties of porous structure as input and 
geometrical parameters as targets. The physical properties considered for analysis are effective thermal 
conductivity and permeability and geometrical parameters are porosity, number of pores and pore 
shape. Keras with TensorFlow backend is utilized to develop deep learning network. The error between 
predictions and the actual values for porosity is very less compared to the number of pores. Mean 
squared error (MSE) for porosity and permeability are approximately 0.003 and 190 respectively. For 
predictions of pore shape the accuracy is 49.21% of mean and 9.75% of standard deviation. Future work 
is to include some more physical properties like compressive strength, acoustic properties and electrical 
properties for inputs and strut thickness, spatial distribution of pores, specific surface area and 
tortuosity. Larger dataset will ensure that our algorithm works fine as we are using deep learning 
architecture. 
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