
188

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 188-192
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Fast Dexelization of Polyhedral Models Using Ray-Tracing Cores of GPU

Authors:
Masatomo Inui, masatomo.inui.az@vc.ibaraki.ac.jp, Ibaraki University
Kohei Kaba, 19nm425n@vc.ibaraki.ac.jp, Ibaraki University
Nobuyuki Umezu, nobuyuki.umezu.cs@vc.ibaraki.ac.jp, Ibaraki University

Keywords:
Dexel Modeling, Polyhedron, Ray-Tracing, Data Conversion, Graphics Processing Unit

DOI: 10.14733/cadconfP.2020.188-192

Introduction:
Boundary representation (B-reps) is a standard method of solid modeling for CAD systems of
mechanical products. Most operations related to B-reps models, especially Boolean set operation,
require techniques like intersection calculation of the surface elements, trimming operation of the
elements based on calculations, and reconstruction of adjacency relationships of the trimmed
elements. These operations are computationally expensive, and the associated topological
reconstruction process tends to be unstable owing to the existence of unavoidable floating-point
errors in the calculations. Techniques using voxels, dexels, rays, or layered depth images based on the
uniform decomposition of the 3D space have been widely used as solid modeling methods that do not
suffer from these problems. With the popularization of these methods, dexel-based solid modeling [3]
is rapidly becoming a standard method to represent object shapes in the NC milling simulation.

Fig. 1: (a) Dexel model and (b) Triple-dexel model with X, Y, Z axis aligned dexels.

In dexel modeling, the workpiece shape is represented by a bundle of Z-axis-aligned segments defined
corresponding to each grid point of a square mesh in the XY plane (consult Fig. 1(a)). As no topological
information is used in the model representation, Boolean operations in dexel modeling are much more
robust than the operations used in B-reps modeling. During dexel modeling, near-vertical surfaces
inevitably exhibit significant shape errors caused by finite grid resolution. The triple-dexel model was
proposed to overcome this non-uniformity in shapes and to realize an accurate shape representation
(consult Fig. 1(b)). In this representation, besides being defined by a Z-axis-aligned dexel model, the 3D

http://www.cad-conference.net/

189

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 188-192
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

shape is also defined by an X-axis-aligned dexel model based on a square mesh in the YZ plane and a
Y-axis-aligned dexel model based on a mesh in the ZX plane.

During dexel-based milling simulation, initial workpiece models are usually available as B-reps
models. The simulation converts them to their equivalent dexel models during the initial step. The
workpiece model is affixed to a table in the milling environment during the simulation. During
conventional 3-axis machining, the orientation of the workpiece is changed after the machining for a
certain side is finished, and it is remounted on the table to machine another of its sides. As the
definition of the dexel model is based on a square mesh fixed in the coordinate plane, rigid body
transformations, especially rotation of the object, are difficult. Therefore, it is necessary to initially
convert the dexel model to a B-reps model, and revert it to a dexel model again following any
necessary rigid body transformations.

During the conversion of a B-reps model into a dexel model, ray algorithm proposed in [1] is
usually used. It defines a set of rays perpendicular to the coordinate plane corresponding to all grid
points of the square mesh in the plane. The intersections between the rays and the B-reps model are
computed, and subsequently converted into dexel segments. A B-reps model representing a resultant
shape from a milling operation often comprises a high number of small polygons — sometimes
exceeding 10,000,000 polygons. This causes the ray algorithm to take upwards of 10 minutes to
convert the model into an accurate dexel model defined based on a 5,000×5,000 resolution grid.
Attempting to reduce of the conversion time has become a serious problem. State-of-the-art GPUs are
equipped with special hardware named RT cores dedicated to image processing called ray-tracing in
3D computer graphics. As an initial step in the application of RT cores in dexel modeling, we propose
a novel method for fast dexelization of complex polyhedral models using RT cores in this paper.

Fig. 2: Polyhedron-to-dexel conversion. Fig. 3: Computation process in the ray-tracing.

Dexelization of Polyhedral Solid Model:
Fig. 2 illustrates the fundamental processing steps involved in the ray algorithm to convert a
polyhedral solid model into its equivalent dexel model. We assume that no gaps or overlaps exist
between the surface polygons in the polyhedral model. Several polyhedral models — STL ones in
particular — do not satisfy this condition. However, polyhedral models in boundary representations
always satisfy this condition.

Consider an axis-aligned regular square mesh on the XY-plane that contains the projection of the
object onto the XY-plane. The appropriate resolution of the mesh is determined by considering the
representation accuracy of the dexel model and the memory capacity of the computer. Corresponding
to each grid point, a ray perpendicular to the coordinate plane (XY plane) is extended along the Z-axis,
and its points of intersection with the surface polygons of the object are computed. These intersection
points are then sorted along the direction of the ray. By connecting odd-numbered intersection points
with even-numbered intersection points using lines, a dexel model equivalent to the polyhedral model
is obtained. If the dexel model is required along the X-axis or the Y-axis, the same computation is
repeated for equivalent grids on the YZ-plane or the ZX-plane.

In order to realize the fast conversion, the acceleration of the following two processes is
necessary.
1. Computation of the points of intersection between surface polygons of the polyhedron and a ray.
2. Sorting of intersection points along the ray.

http://www.cad-conference.net/

190

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 188-192
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

Real-Time Ray-Tracing:
Ray-tracing is a computer graphics technique used to generate photo-realistic images. As depicted in
Fig. 3, this method transmits a ray of light passing through each pixel of the display from the viewing
point. When the ray collides with a solid shape placed in a virtual space, it is divided into two rays, one
of which is reflected from the solid surface, and the other, which is refracted and advances into the
solid's interior. This process is recursively repeated, and when any light source is reached, the
corresponding color component is transmitted back to the viewing point to generate a three-
dimensional computer image. Although this technique is known to produce high quality images, its
computational cost is very high and its use in applications requiring real-time performance is difficult.

Most currently available GPUs adopt many core architectures and comprise several computational
units, e.g., CUDA cores in NVIDIA’s GPUs. Among the GPUs supplied by NVIDIA, products whose
names include the prefix, RTX-, comprise a set of processing cores specialized for ray-tracing
computations. They are called RT (ray-tracing) cores. For example, RTX-2080 GPU comprises 46 RT
cores in addition to 2944 CUDA cores. By using RT cores, ray-tracing images of complex 3D virtual
environments including multiple polyhedral objects can be generated in real-time for a full-HD
display.

During ray-tracing, the following two operations are repeatedly executed.
⚫ A straight line (ray) is extended through each grid point of the pixel-grid of a display. The ray can

be set to be perpendicular to the display in the orthogonal projection.
⚫ Corresponding to each ray, its point of intersection with the solid surface is computed. A part of

the ray subsequently proceeds into the solid's interior, and the intersection point computation
with respect to the solid's surface is recursively executed. As a result, a series of ordered
intersection points are obtained along the ray.

These operations are almost identical to the ones necessary during the conversion of polyhedral
models into dexel models using the ray algorithm. Therefore, fast dexelization of the polyhedral
models is enabled by using RT cores.

Optix, API for Ray-Tracing Computation:
NVIDIA Corporation provides an API library named Optix for ray-tracing computations [2]. The
function of an RT core is automatically available through the API function of Optix. In order to
evaluate the effectiveness of the RT core in dexel processing, a dexelization software of the polyhedral
model was implemented using the API of Optix, and computational experiments were performed.

Optix is implemented using C++ and it defines following three basic classes:
⚫ Context class: A fundamental class for defining ray-tracing functions. Almost all events are

defined as instances of this class.
⚫ Geometry class: A class for defining geometric properties and operations, e.g., coordinates of

polygons, a bounding box, and a function for intersection computations. We use geometry
triangles class which is specialized for dealing with triangular polygons.

⚫ Material class: A class that defines the reflectivity, refractive index and other material properties
of a solid object.

Though various functions can be implemented via Optix, the following three kinds of functions
are used in our polyhedron-to-dexel conversion software.
⚫ Ray-generation program: This is a function called by the launch function that starts Optix

processing. Ray-tracing processing is initiated here. Functions in this program are defined in the
context class.

⚫ Closest hit program: This function is called when a ray collides with the nearest polygon during
the ray-tracing process. Information about intersection points that is necessary in the
polyhedron-to-dexel conversion is recorded by using this function. Functions in this program are
defined in the material class.

⚫ Miss program: This function is called when a ray does not intersect any solids during the ray-
tracing process. This function is used to terminate the ray-tracing operation. Functions in this
program are defined in the context class.

To initiate Optix processing, the launch function of the context class is invoked based on the number
of rays. Functions of Optix can be used in the threads invoked in the CUDA environment. In this case,

http://www.cad-conference.net/

191

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 188-192
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

a function named rtTrace is called in each thread, together with the information of the polyhedral
model and the corresponding ray.

Dexelization Algorithm Using Optix:
The processing flow of our dexelization algorithm using Optix is as follows (consult Fig. 4). In our
implementation, the processing steps between Step 5 and Step 7 are executed by threads in a CUDA
program, enabling the parallel computation of dexels for multiple rays.
Step 1: A context is generated. Optix constants and buffer for I/O are defined, followed by the

definition of the ray-generation program and the miss program.
Step 2: Geometry triangles are generated. Following that, vertex data array of the triangles of the input

model are transferred to the Optix buffer.
Step 3: A material class is created to define a closest hit program.
Step 4: The number of rays are specified to the launch function to initiate Optix processing.
Step 5: A set of rays is defined to be used during the Optix processing. Grid points on the XY-plane are

indicated as starting points for the rays, and a direction perpendicular to the XY-plane is indicated
as direction of the rays. These operations are simultaneously executed by multiple threads.

Step 6: Ray-tracing computations are performed using the rtTrace function for each thread.
Step 7: Information regarding the intersection points is stored using the closest hit program which is

invoked whenever the intersection points are calculated (Fig. 4(a)). The starting point of the ray is
then updated to be the intersection point, and Step 6 is executed again (Fig. 4(b)). If no intersection
point is detected for a ray, the miss program is called and the exit flag is raised (consult the two
lines at the left end in Fig. 4(c)). In this case, the Optix process is terminated for the ray.

Step 8: The obtained intersection points for the ray have already been sorted along the ray. For each
ray, pairs of odd-numbered intersection point and even-numbered intersection point are checked,
and then connected to obtain the dexels corresponding to the ray.

Fig. 4: Polyhedron-to-dexel conversion process using Optix.

Computational Experiments:
To evaluate the performance of polyhedron-to-dexel conversion using RT cores, Step 1 to Step 7 of the
aforementioned algorithm are implemented using Optix. A polyhedral model in the STL format is
taken to be the input. Our software generates a set of vertical rays starting from grid points of the
square mesh placed on the XY-plane, and then computes all intersection points between the rays and
the polyhedral model. The obtained points are already order along the rays during the ray-tracing
process. The software was implemented using VisualStudio 2017, CUDA 10.1, Optix 6.0, and Cmake
3.14. The specifications of the PC used in the experiment are CPU: Intel Core i9-9900 (3.60 GHz), RAM:
32GB, GPU: GeForce RTX-2080.

Instead of the workpiece models representing the milling result, we use two polyhedral models,
model A and model B depicted in Fig. 5 in our conversion experiments for the purpose of maintaining
confidentiality. Number of polygons of the models and resolutions of the square mesh for the dexel
representation are illustrated in the figures. Fig. 6 shows the conversion results for the models given
in Fig. 5. In this figure, ordered intersection points between the vertical rays and the models are only

http://www.cad-conference.net/

192

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 188-192
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

illustrated. By connecting odd-numbered intersection point and even-numbered intersection point with
a line segment, dexel models equivalent to the models given in Fig. 5 are obtained. The time required
for the processing was 0.524 s for model A and 0.369 s for model B. We have implemented another
ray-algorithm-based conversion software. This software realizes the parallel conversion using CUDA
cores of GPU. In the conversion, this software needs 7.26 s for model A and 1.95 s for model B. The
conversion software using RT cores is 13.9 times faster for model A and 5.3 times faster for model B.

Fig. 5: Sample models.

Fig. 6: Sorted intersection points for model A (a) and for model B (b).

Conclusions:
State-of-the-art GPUs are equipped with special hardware called RT cores that are dedicated to ray-
tracing. In this paper, we proposed a novel method for fast dexelization of a complex polyhedral model
using RT cores. NVIDIA Corporation provides an API library named Optix for ray-tracing computations.
The function of the RT core is automatically available through the API function of Optix. In order to
evaluate the effectiveness of the RT core in dexel processing, a dexelization software of polyhedral
models was implemented using the API of Optix, and computational experiments were performed. At
present, it is necessary to mediate the API for computer graphics using systems such as Optix to use
RT cores, and several restrictions remain on programming. For instance, the number of polygons that
can be simultaneously handled in Optix is limited, and it is difficult to realize a computation using
objects with more than hundred million polygons. We are currently investigating the problems and
limitations of using RT cores and Optix, and examining their solutions.

References:
[1] Menon, J.; Marisa, R.J.; Zagajac, J: More powerful solid modeling through ray representations,

IEEE Computer Graphics and Applications, 14(3), May 1994, 22-35.
https://doi.org/10.1109/38.279039

[2] NVIDIA OptiX™ Ray Tracing Engine, https://developer.nvidia.com/optix
[3] VanHook, T.: Real-time shaded milling display, Computer Graphics (Proceedings of ACM

SIGGRAPH), 20(4), 1986, 15-20. https://doi.org/10.1145/15886.15887

http://www.cad-conference.net/
https://doi.org/10.1109/38.279039
https://doi.org/10.1145/15886.15887

