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Introduction: 
The application of machine learning (ML) is becoming common in many different fields. This is being 
referred to as a new digital revolution comparable to the invention of the internet; allowing for digital 
transformations in many different industries. Machine learning is the science of getting computers to 
learn to perform tasks without being explicitly programmed. The use of machine learning in 
Computer-Aided Design (CAD) modelling could have several applications. Examples of these include: 
the identification of machining features (i.e. slots and holes) for CAD to Computer-Aided 
Manufacturing (CAM) integration or the detection of features that hinder the creation of high quality 
Finite Element (FE) meshes, that normally must be manually removed before analysis can be 
undertaken. Although, there are several problematic issues that must be addressed. The first is that 
many common CAD model formats cannot be used as the direct input into a machine learning 
algorithm such as a neural network. These algorithms require a fixed input size for each piece of data 
across the entire dataset used to train and test the algorithm. However, for a CAD model represented 
as a boundary representation (B-Rep), as is the norm in many CAD systems, its format does not lend 
itself to a fixed sized data structure. Therefore, the CAD models need to be converted into a different 
representation for ML. The most common representations are voxels, point clouds or meshes. Each of 
these discretize the 3D space in which the CAD model exists. However, this results in a loss of 
information that could be useful for training the algorithm such as geometric information. This 
information could be represented as input features to the ML algorithm. These features are different 
from those usually defined in CAD systems, referring to any information/pattern in which the 
machine learning algorithm can learn. In this paper, the two different sets of features will be 
differentiated by referring to each as either “CAD features” and “ML features”. There is a scarcity of 
published research into the connection to CAD models, instead most research only works on these 
secondary representations. It would be helpful if these geometric CAD features could be re-
incorporated into the secondary representation, so that they could be used as additional ML features 
that could boost the ML algorithm’s performance. 

Main Idea: 
Problem of Representing 3D Models 
For the purpose of machine learning, CAD models produced in commercial CAD systems such as 
CATIA V5 [1] or Siemens NX [11] are normally converted from B-Rep to a secondary representation. 
Examples include: voxels, point clouds and meshes. A voxel representation is effectively a 3D image 
which has a regular structure similar to a 2D pixel grid, but with additional depth information. This 
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spatial occupancy enumeration has several different types, but the most common is a binary format 
where if a voxel lies within the shape it is denoted with a 1 and if it lies outside the shape it is denoted 
with a 0. One benefit of this approach is that it is easy to take ML algorithms optimized for 2D image 
tasks and re-implement them for learning tasks on 3D voxels. However, this representation is highly 
computationally expensive for higher resolutions. This is because the computational cost scales 
cubically with an increase in resolution. For example, a model with a resolution of 64x64x64 has 
262,144 parameters if this resolution is doubled to 128x128x128 the number of parameters increases 
to 16,400,384 (6156% more). At higher resolutions, the time to train ML algorithms becomes 
impractical and can also result in an inability to fit the data in memory. A voxel representation is also 
considered to be a dense representation in which information is stored about the entire volume of the 
shape. Yet, B-Rep models only contain information on the boundaries. Therefore, for most solid 
shapes a voxel representation stores a lot of redundant information that does not benefit the learning 
problem at hand.  

A point cloud represents a 3D model as a set of data points in 3D space. These points discretize 
the surface of the 3D model, where each point is represented as a set of coordinates (x, y, z). 
Additional dimensions can be used to store the surface normals and other local or global CAD 
features. 3D scanning technology often represents objects as point clouds where depth points are 
extracted from the external surface of the objects. To this end, many papers have reported on the 
utilization of point clouds for machine learning purposes. Although, initial papers [9][10] converted 
the point cloud data into voxel or other formats before inputting the data into a machine learning 
algorithm. This is due to point clouds having an irregular structure. Unlike with voxel data, previously 
developed ML algorithms optimized for image tasks are not easily able to be adapted for this kind of 
structure. The conversion to a voxel representation however creates overly voluminous data as well as 
generating quantization artefacts that obstruct the natural invariance of the data. Recent papers [6][7] 
have been able to implement the point cloud directly as an input. This allows for a reduction in the 
number of parameters needed to represent the 3D shape in comparison to voxel representations; as 
information is also only needed to be stored about the boundary of the shape. Therefore, this reduces 
the computational expense of training and implementing the algorithm.  

Meshes are similar to point clouds as they both have an irregular structure. Previous papers [3][4] 
have used triangular surface meshes for representing the shape, meaning that only information about 
the boundary is stored. This representation in turn, has many of the benefits of point clouds from a 
reduction in the number of parameters to a flexibility over the resolution. One advantage compared to 
point clouds is its connectivity information that can be used to represent the underlying surface of the 
model. 

For this paper, a point cloud representation was chosen due to mesh approaches having the 
difficulty of creating a fixed input structure. It was assumed that if an effective approach for labelling 
could be found for point clouds, it could be easily adapted for mesh data. 

 
Importance of Additional Geometric CAD Features 

Many of the previous papers on machine learning for point cloud data utilize data sourced from 3D 
scans. Therefore, there was no original CAD model to probe for additional ML features. This has 
resulted in most papers not utilizing CAD features that could give increased performance to the ML 
algorithm. To clarify ML algorithms, especially neural networks, benefit from large datasets containing 
thousands to millions of pieces of data and there is a direct correlation between the accuracy of the 
algorithm and the amount of training data used. Access to larger amounts of data is one of the main 
reasons for the current surge in the application of machine learning in many industries. It is not 
sufficient to just give a ML algorithm data and expect it to learn. The data must also contain the 
information in which the algorithm is expected to learn, which is represented in the form of a label. In 
a task called supervised learning, the ML algorithm makes a prediction on what it thinks the label 
should be, this is then compared to the true label. Through calculating a loss metric between the true 
and predicted label, the algorithm can be altered to help it better predict the data on a different 
iteration of training.  
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The problem arises with having insufficient amounts of data for training on CAD models. There 
does not exist large repositories of CAD models with labels that may want to be learnt such as 
machining features. Although, there has been work on compiling a range of CAD models into datasets 
for machine learning purposes [5][14], these still lack the necessary labels for CAD applications. The 
other option is to automatically generate CAD models allowing for better control over the labelling 
process [13]. The problem with this approach is that the models created are often highly rudimental, 
lacking in the complexity seen in actual CAD models produced by an engineer. There is also the risk of 
the programmer of the generator algorithm unintentionally introducing ML features in the data that 
the ML algorithm could become over reliant on for learning, or the models could lack important ML 
features. In cases like these, it can be said that the data distribution of the generated data is not the 
same as the distribution of the actual data and therefore the ML algorithm cannot generalize for new 
data that it sees. This results in low-performance accuracy and an inability to learn the necessary ML 
features for the data it will be presented.  

Where there is a lack of data available for machine learning, additional hand-engineered ML 
features can be used to improve performance. These ML features are chosen based on prior knowledge 
of their importance to the problem. Effectively, instead of getting the ML algorithm to learn every 
feature from scratch, it is given a head start by providing extra important information. It is here that 
some CAD geometric information could give significant performance gains. It is therefore paramount 
that there are methods of extracting this geometric information for machine learning purposes. 

 
Point Cloud Generation 

Within CAD systems, there is often much functionality for importing point clouds, however there lacks 
functionality for point cloud generation. Ma et al [8] created point clouds from sampling the nodes in a 
mesh. The problem with this was that the mesh did not uniformly sample the 3D model. Instead, it 
produced dense regions in areas of higher detail. This artefact is generally desirable for Computer-
Aided Engineering (CAE), the intended purpose of such meshing algorithms. However, the authors’ 
future work will include the application of machine learning to learn to decompose CAD models for 
the generation of a hexahedral dominant mesh for analysis [14]. For such applications, this will leave 
areas of the CAD model insufficiently described, where new face splits would be created during the 
decomposition task and could be detrimental for the learning process. 

In this paper, an external open-source program is chosen for the point cloud generation 
CloudCompare [2]. The CAD system used in the experiments was Siemens NX. For the importation of 
the CAD model into the point cloud generation program, it requires the discretization of the model 
into a mesh. This is achieved by creating a Standard Triangle Language (STL) version of the model. A 
point cloud is then generated with a specific size e.g. 10,000 points. This is then imported back into 
the CAD system to be labelled. Fig. 1 shows a general process flow for the labelling of a point cloud 
with information from a decomposition task. The reason for the generation of the point cloud from 
the original undecomposed CAD model is due to the fact that new geometry is created in the 
decomposition process. This will not be present for a non-decomposed model given to the ML 
algorithm after training. Therefore, the algorithm needs to not be reliant on this new information 
generated in the decomposition task. This approach allows for this to be apparent and enables the 
gathering of both non-decomposed and decomposed geometric information. By sampling uniformly 
and performing a study on the number of points used to represent the data accurately, one is also able 
to be sure that all regions are sufficiently described. 

 
Point Cloud Labelling 

One of the most important aspects of this process, is the ability to gage which face each point belongs 
to. The identification of these CAD face features allows for easier transversal of the model to obtain 
other CAD features such as edges or vertices. The first step in this labelling process is to superimpose 
the point cloud onto the CAD model. One problem that arises from the conversion of the B-Rep to an 
STL is that points that should lie on curved faces no longer do. This means that one cannot simply 
search if the point is contained within a face to label it. 
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Fig. 1: Process Flow of Point Cloud Labelling for a Decomposition Task. 

 

Although, the distance of the point from the face can be used to indicate if it belongs to that face. It 
would be computationally expensive to calculate the distance between every point in the point cloud 
and every face in the model. Instead, a bounding box is initially calculated for every face in the model. 
Then, for a point it can be checked whether it lies in any of the bounding boxes. The check is done 
across all the bounding boxes at once using fast array operations from the C# Linq library. This in 
turn, decreases the number of potential faces in the search space on average by 97.89% for a point 
cloud of 10,000 points. A tolerance is added to the bounding box, due to some points no longer lying 
on the surface, meaning they may not be contained within the exact bounding box. The tolerance 
heuristically is chosen to be 0.1mm. For all the potential faces, the distance metric is calculated and 
then the face with the smallest distance is chosen. If the distance metric calculated is 0 then this face 
is assumed to be the correct face. Fig. 2 shows the algorithm used to label the point cloud. 

 
Fig. 2: Algorithm for Face Assignment for Point Clouds.

 

Conclusions: 

The following conclusions have been drawn for this work: 

• There is a need for methodologies for creating fixed size datasets enriched with CAD model 
information (e.g. CAD features, face properties), suitable for use with machine learning 
algorithms. 
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• A complete pipeline for the creation and labelling of point cloud data from CAD models is 
presented. 

• An algorithm for the assignment of face labels to point clouds has been developed with the 
limitations addressed. 
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