
152

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 152-156
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Point Cloud Dataset Creation for Machine Learning on CAD Models

Authors:
Andrew R. Colligan, acolligan01@qub.ac.uk, Queen’s University Belfast
Trevor T. Robinson, t.robinson@qub.ac.uk, Queen’s University Belfast
Declan C. Nolan, d.nolan@qub.ac.uk, Queen’s University Belfast
Yang Hua, y.hua@qub.ac.uk, Queen’s University Belfast

Keywords:
Machine Learning, CAD Models, Point Cloud, Dataset Creation

DOI: 10.14733/cadconfP.2020.152-156

Introduction:
The application of machine learning (ML) is becoming common in many different fields. This is being
referred to as a new digital revolution comparable to the invention of the internet; allowing for digital
transformations in many different industries. Machine learning is the science of getting computers to
learn to perform tasks without being explicitly programmed. The use of machine learning in
Computer-Aided Design (CAD) modelling could have several applications. Examples of these include:
the identification of machining features (i.e. slots and holes) for CAD to Computer-Aided
Manufacturing (CAM) integration or the detection of features that hinder the creation of high quality
Finite Element (FE) meshes, that normally must be manually removed before analysis can be
undertaken. Although, there are several problematic issues that must be addressed. The first is that
many common CAD model formats cannot be used as the direct input into a machine learning
algorithm such as a neural network. These algorithms require a fixed input size for each piece of data
across the entire dataset used to train and test the algorithm. However, for a CAD model represented
as a boundary representation (B-Rep), as is the norm in many CAD systems, its format does not lend
itself to a fixed sized data structure. Therefore, the CAD models need to be converted into a different
representation for ML. The most common representations are voxels, point clouds or meshes. Each of
these discretize the 3D space in which the CAD model exists. However, this results in a loss of
information that could be useful for training the algorithm such as geometric information. This
information could be represented as input features to the ML algorithm. These features are different
from those usually defined in CAD systems, referring to any information/pattern in which the
machine learning algorithm can learn. In this paper, the two different sets of features will be
differentiated by referring to each as either “CAD features” and “ML features”. There is a scarcity of
published research into the connection to CAD models, instead most research only works on these
secondary representations. It would be helpful if these geometric CAD features could be re-
incorporated into the secondary representation, so that they could be used as additional ML features
that could boost the ML algorithm’s performance.

Main Idea:
Problem of Representing 3D Models
For the purpose of machine learning, CAD models produced in commercial CAD systems such as
CATIA V5 [1] or Siemens NX [11] are normally converted from B-Rep to a secondary representation.
Examples include: voxels, point clouds and meshes. A voxel representation is effectively a 3D image
which has a regular structure similar to a 2D pixel grid, but with additional depth information. This

http://www.cad-conference.net/

153

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 152-156
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

spatial occupancy enumeration has several different types, but the most common is a binary format
where if a voxel lies within the shape it is denoted with a 1 and if it lies outside the shape it is denoted
with a 0. One benefit of this approach is that it is easy to take ML algorithms optimized for 2D image
tasks and re-implement them for learning tasks on 3D voxels. However, this representation is highly
computationally expensive for higher resolutions. This is because the computational cost scales
cubically with an increase in resolution. For example, a model with a resolution of 64x64x64 has
262,144 parameters if this resolution is doubled to 128x128x128 the number of parameters increases
to 16,400,384 (6156% more). At higher resolutions, the time to train ML algorithms becomes
impractical and can also result in an inability to fit the data in memory. A voxel representation is also
considered to be a dense representation in which information is stored about the entire volume of the
shape. Yet, B-Rep models only contain information on the boundaries. Therefore, for most solid
shapes a voxel representation stores a lot of redundant information that does not benefit the learning
problem at hand.

A point cloud represents a 3D model as a set of data points in 3D space. These points discretize
the surface of the 3D model, where each point is represented as a set of coordinates (x, y, z).
Additional dimensions can be used to store the surface normals and other local or global CAD
features. 3D scanning technology often represents objects as point clouds where depth points are
extracted from the external surface of the objects. To this end, many papers have reported on the
utilization of point clouds for machine learning purposes. Although, initial papers [9][10] converted
the point cloud data into voxel or other formats before inputting the data into a machine learning
algorithm. This is due to point clouds having an irregular structure. Unlike with voxel data, previously
developed ML algorithms optimized for image tasks are not easily able to be adapted for this kind of
structure. The conversion to a voxel representation however creates overly voluminous data as well as
generating quantization artefacts that obstruct the natural invariance of the data. Recent papers [6][7]
have been able to implement the point cloud directly as an input. This allows for a reduction in the
number of parameters needed to represent the 3D shape in comparison to voxel representations; as
information is also only needed to be stored about the boundary of the shape. Therefore, this reduces
the computational expense of training and implementing the algorithm.

Meshes are similar to point clouds as they both have an irregular structure. Previous papers [3][4]
have used triangular surface meshes for representing the shape, meaning that only information about
the boundary is stored. This representation in turn, has many of the benefits of point clouds from a
reduction in the number of parameters to a flexibility over the resolution. One advantage compared to
point clouds is its connectivity information that can be used to represent the underlying surface of the
model.

For this paper, a point cloud representation was chosen due to mesh approaches having the
difficulty of creating a fixed input structure. It was assumed that if an effective approach for labelling
could be found for point clouds, it could be easily adapted for mesh data.

Importance of Additional Geometric CAD Features

Many of the previous papers on machine learning for point cloud data utilize data sourced from 3D
scans. Therefore, there was no original CAD model to probe for additional ML features. This has
resulted in most papers not utilizing CAD features that could give increased performance to the ML
algorithm. To clarify ML algorithms, especially neural networks, benefit from large datasets containing
thousands to millions of pieces of data and there is a direct correlation between the accuracy of the
algorithm and the amount of training data used. Access to larger amounts of data is one of the main
reasons for the current surge in the application of machine learning in many industries. It is not
sufficient to just give a ML algorithm data and expect it to learn. The data must also contain the
information in which the algorithm is expected to learn, which is represented in the form of a label. In
a task called supervised learning, the ML algorithm makes a prediction on what it thinks the label
should be, this is then compared to the true label. Through calculating a loss metric between the true
and predicted label, the algorithm can be altered to help it better predict the data on a different
iteration of training.

http://www.cad-conference.net/

154

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 152-156
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

The problem arises with having insufficient amounts of data for training on CAD models. There
does not exist large repositories of CAD models with labels that may want to be learnt such as
machining features. Although, there has been work on compiling a range of CAD models into datasets
for machine learning purposes [5][14], these still lack the necessary labels for CAD applications. The
other option is to automatically generate CAD models allowing for better control over the labelling
process [13]. The problem with this approach is that the models created are often highly rudimental,
lacking in the complexity seen in actual CAD models produced by an engineer. There is also the risk of
the programmer of the generator algorithm unintentionally introducing ML features in the data that
the ML algorithm could become over reliant on for learning, or the models could lack important ML
features. In cases like these, it can be said that the data distribution of the generated data is not the
same as the distribution of the actual data and therefore the ML algorithm cannot generalize for new
data that it sees. This results in low-performance accuracy and an inability to learn the necessary ML
features for the data it will be presented.

Where there is a lack of data available for machine learning, additional hand-engineered ML
features can be used to improve performance. These ML features are chosen based on prior knowledge
of their importance to the problem. Effectively, instead of getting the ML algorithm to learn every
feature from scratch, it is given a head start by providing extra important information. It is here that
some CAD geometric information could give significant performance gains. It is therefore paramount
that there are methods of extracting this geometric information for machine learning purposes.

Point Cloud Generation

Within CAD systems, there is often much functionality for importing point clouds, however there lacks
functionality for point cloud generation. Ma et al [8] created point clouds from sampling the nodes in a
mesh. The problem with this was that the mesh did not uniformly sample the 3D model. Instead, it
produced dense regions in areas of higher detail. This artefact is generally desirable for Computer-
Aided Engineering (CAE), the intended purpose of such meshing algorithms. However, the authors’
future work will include the application of machine learning to learn to decompose CAD models for
the generation of a hexahedral dominant mesh for analysis [14]. For such applications, this will leave
areas of the CAD model insufficiently described, where new face splits would be created during the
decomposition task and could be detrimental for the learning process.

In this paper, an external open-source program is chosen for the point cloud generation
CloudCompare [2]. The CAD system used in the experiments was Siemens NX. For the importation of
the CAD model into the point cloud generation program, it requires the discretization of the model
into a mesh. This is achieved by creating a Standard Triangle Language (STL) version of the model. A
point cloud is then generated with a specific size e.g. 10,000 points. This is then imported back into
the CAD system to be labelled. Fig. 1 shows a general process flow for the labelling of a point cloud
with information from a decomposition task. The reason for the generation of the point cloud from
the original undecomposed CAD model is due to the fact that new geometry is created in the
decomposition process. This will not be present for a non-decomposed model given to the ML
algorithm after training. Therefore, the algorithm needs to not be reliant on this new information
generated in the decomposition task. This approach allows for this to be apparent and enables the
gathering of both non-decomposed and decomposed geometric information. By sampling uniformly
and performing a study on the number of points used to represent the data accurately, one is also able
to be sure that all regions are sufficiently described.

Point Cloud Labelling

One of the most important aspects of this process, is the ability to gage which face each point belongs
to. The identification of these CAD face features allows for easier transversal of the model to obtain
other CAD features such as edges or vertices. The first step in this labelling process is to superimpose
the point cloud onto the CAD model. One problem that arises from the conversion of the B-Rep to an
STL is that points that should lie on curved faces no longer do. This means that one cannot simply
search if the point is contained within a face to label it.

http://www.cad-conference.net/

155

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 152-156
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

Fig. 1: Process Flow of Point Cloud Labelling for a Decomposition Task.

Although, the distance of the point from the face can be used to indicate if it belongs to that face. It
would be computationally expensive to calculate the distance between every point in the point cloud
and every face in the model. Instead, a bounding box is initially calculated for every face in the model.
Then, for a point it can be checked whether it lies in any of the bounding boxes. The check is done
across all the bounding boxes at once using fast array operations from the C# Linq library. This in
turn, decreases the number of potential faces in the search space on average by 97.89% for a point
cloud of 10,000 points. A tolerance is added to the bounding box, due to some points no longer lying
on the surface, meaning they may not be contained within the exact bounding box. The tolerance
heuristically is chosen to be 0.1mm. For all the potential faces, the distance metric is calculated and
then the face with the smallest distance is chosen. If the distance metric calculated is 0 then this face
is assumed to be the correct face. Fig. 2 shows the algorithm used to label the point cloud.

Fig. 2: Algorithm for Face Assignment for Point Clouds.

Conclusions:

The following conclusions have been drawn for this work:

• There is a need for methodologies for creating fixed size datasets enriched with CAD model
information (e.g. CAD features, face properties), suitable for use with machine learning
algorithms.

http://www.cad-conference.net/

156

Proceedings of CAD’20, Barcelona, Spain, July 6-8, 2020, 152-156
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

• A complete pipeline for the creation and labelling of point cloud data from CAD models is
presented.

• An algorithm for the assignment of face labels to point clouds has been developed with the
limitations addressed.

Acknowledgements:

Author Andrew R. Colligan is a PhD researcher who is funded through DfE government funding.

References:
[1] CATIA V5, https://www.3ds.com/products-services/catia/
[2] Cloudcompare, https://www.cloudcompare.org/
[3] Feng, Y.; Feng Y.; You, H.; Zhao, X.; Gao, Y.: MeshNet: Mesh Neural Network for 3D Shape

Representation, Proceedings of the AAAI Conference on Artificial Intelligence, 33, 2019, 8279–86.
https://doi.org/10.1609/aaai.v33i01.33018279

[4] Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S.; Cohen-Or D.: MeshCNN: A Network with
an Edge, 2018. https://doi.org/10.1145/3306346.3322959

[5] Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin, D.;
Panozzo, D.: ABC: A Big CAD Model Dataset For Geometric Deep Learning, The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.
https://doi.org/10.1109/CVPR.2019.00983

[6] Qi, C. R.; Li, Y.; Hao, S.; Guibas, L. J.: PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space, NIPS’17: Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, 5105-5114

[7] Qi, C. R.; Su, H.; Kaichun, M.; Guibas, L. J.: PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation, 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, 77–85. https://doi.org/10.1109/CVPR.2017.16

[8] Ma, Y.; Zhang, Y.; Luo, X.: Automatic Recognition of Machining Features Based on Point Cloud
Data using Convolution Neural Networks, AICS 2019: Proceedings of the 2019 International
Conference on Artificial Intelligence and Computer Science, 2019, 229–35.
https://doi.org/10.1145/3349341.3349407

[9] Maturana, D.; Scherer, S.: VoxNet: A 3D Convolutional Neural Network for real-time object
recognition, In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015, 922–8. https://doi.org/10.1109/IROS.2015.7353481

[10] Sedaghat, N.; Zolfaghari, M.; Amiri, E.; Brox, T.: Orientation-boosted voxel nets for 3D object
recognition, British Machine Vision Conference (BMVC), 2017. https://doi.org/10.5244/C.31.97

[11] Siemens NX, https://www.plm.automation.siemens.com/global/en/products/nx/
[12] Sun, L.; Tierney, C.; Robinson, T.; Armstrong, C.: Automatic decomposition of complex thin

walled CAD models for hexahedral dominant meshing, Procedia Engineering, 2016, 163.
https://doi.org/10.1016/j.proeng.2016.11.052

[13] Zhang, Z.; Jaiswal, P.; Rai, R.: FeatureNet: Machining feature recognition based on 3D Convolution
Neural Network, Computer-Aided Design, 101, 2018, 12–22.
https://doi.org/10.1016/j.cad.2018.03.006

[14] Wu, Z.; Song, S.; Khosla, A.; Fisher, Y.; Zhang, L.; Tang, X.; Xiao, J.: 3D ShapeNets: A deep
representation for volumetric shapes, 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, 1912–20. https://doi.org/10.1109/CVPR.2015.7298801

http://www.cad-conference.net/
https://www.3ds.com/products-services/catia/
https://www.cloudcompare.org/
https://doi.org/10.1609/aaai.v33i01.33018279
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1109/CVPR.2019.00983
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1145/3349341.3349407
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.5244/C.31.97
https://www.plm.automation.siemens.com/global/en/products/nx/
https://doi.org/10.1016/j.proeng.2016.11.052
https://doi.org/10.1016/j.cad.2018.03.006
https://doi.org/10.1109/CVPR.2015.7298801

