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Introduction:

The observed behaviours of real materials in life or engineering applications always present a certain degree
of time dependency [6, 7]. For example, metals, especially under higher temperatures, usually exhibit
simultaneously the phenomena of viscoplasticity and creep. The former is a common time dependent
plastic deformation and the latter performs the strain-time relationship when deformed at constant stress
level. Finite element analysis (FEA) is a main numerical method to deal with these time dependent
problems in engineering for many years [8]. Geometrical models are usually discretized into mesh model
for FEA, which not only introduces approximation error in the discretization process but also loses
certain geometrical information. The gap between CAD and FEA is expected to be bridged by using
isogeometric analysis (IGA), proposed by Hughes et al. [2, 3], where the same spline functions are used
for both the geometry description in CAD and the variables approximation in FEA. The precise geometry
representation and higher-order element continuity of IGA could bring great bene�ts in the viscoplastic
and creep simulation. Therefore, it is a signi�cant and interesting topic to investigate the application of
isogeometric analysis on viscoplastic and creep problems.

In this paper, two dimensional small deformation viscoplastic and creep problems are investigated by
using NURBS based isogeometric analysis. Viscoplastic materials combining with von-Mises yield func-
tion and Perzyna's �ow rule are employed [5]. The stresses expression, stress-strain relationship matrix,
isogeometric discrete formulations and other important formulas of viscoplastic and creep problems are
derived and listed in detail. Numerical examples are investigated to verify the validity of the proposed
method through comparing with the results obtained from commercial software ABAQUS and that from
existing literatures.

Viscoplasticity and Creep:

In this paper, the small strain problem of the viscoplastic materials is simulated. It is assumed that the
total strain, ε, can be separated into elastic, εe, and viscoplastic, εvp, components, so the stress rate can

Proceedings of CAD'20, Barcelona, Spain, July 6-8, 2020, 116-120
© 2020 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


117

be expressed with the stress-strain relation as

9σ �D 9εe �D p 9ε� 9εvpq (2.1)

Considering the property of the viscoplastic materials, it is now necessary to determine a �ow rule
de�ning the viscoplastic strains. A simple and explicit form is one in which the viscoplastic strain rate
depends only on the current stresses, so that

9εvp �
1

η
xfpσqy

Bfpσq

Bσ
(2.2)

where η is the viscosity parameter. fpσq � }s} �
b

2
3σy is the yield function in von-Mises type and the

notation x y implies the ramp function xxy � x�|x|
2 .

With the implicit time integration scheme, the viscoplastic strain increment ∆εvpn generated in time
interval ∆tn � tn � tn�1 can be calculated as

∆εvpn � ∆tn
�
p1 � θq 9εvpn�1 � θ 9εvpn

�
(2.3)

in which 9εvpn�1 is computed from Eq. (2.2) with σ � σn�1. While 9εvpn is unknown at time tn and can be
obtained according to Taylor's formula as

9εvn � 9εvpn�1 �

�
B 9εvp

Bσ



n�1

∆σn � 9εvn�1 �Hn�1∆σn (2.4)

where ∆σn is the stress increment and can be calculated analogously with Eq. (2.1). The expression of
stress increment with respect to the unknown displacement increment can be rewritten, by substituting
Eqs. (2.3), (2.4) and ∆εn � B∆un, as

∆σn �Dn

�
B∆un � ∆tn 9εvpn�1

�
(2.5)

where Dn �
�
D�1 � θ∆tnHn�1

��1
is the matrix of stress-strain relation at time tn.

Creep problem can be depicted through observing the change in strain over time by applying the load
for a long period of time under constant room temperature. In this paper, the primary and secondary
creep problems in a two-dimensional analysis are taken into consideration. Creep strain rate can be
calculated with the following formulas

9εc �
1

η
}s}

B}s}

Bσ
, 9εc �

1

η
}s}

B}s}

Bσ
� tm (2.6)

The secondary creep problem, also known as steady-state creep problem, is directly simpli�ed by assigning
the initial yield stress to zero and Eq. (2.2) can be substituted as the former in Eq. (2.6). In the primary
creep problem, the creep strain rate is regarded as the function of time which can be written as the latter
in Eq. (2.6), where m is a given constant number range p�1, 0s and if m � 0 this problem becomes the
secondary creep problem. The rest calculation of the creep problem is similar with viscoplastic problem.

Isogeometric Formulations:

Considering the governing equations of the viscoplastic deformation, the incremental form during the
time interval ∆tn can be written as »

Ω

BT
n∆σndΩ � ∆fn (2.7)
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and substituting for ∆σn from Eq. (2.5) the above equation becomes

»
Ω

BTDnB∆undΩ �

»
Ω

BTDn∆tn 9εvpn�1dΩ � ∆fn (2.8)

Due to the nonlinearity of the viscoplastic problem and the fact that viscoplastic strain rate is ap-
proximately calculated at time tn by Taylor's formula, the residual is inevitable and can be given by
Rn �

³
Ω
BT

nσndΩ � fn. The residual can be added to the incremental equilibrium equation at the
next time interval ∆tn�1 and the complexity caused by the Newton-Raphson iteration can be avoided
e�ectively. Then the discretized isogeometric equations derived for small strain viscoplastic problem are

Kn�1∆un�1 � F n�1 (2.9)

where

Kn�1 �

»
Ω

BTDn�1BdΩ , F n�1 �

»
Ω

BTDn�1∆tn�1 9εvpn dΩ � ∆fn�1 �Rn (2.10)

Analogously, the isogeometric formulations of the creep problem can be expressed as previous.

Numerical Examples:

As given in Fig. 1(a), a thick cylinder subjected to a constant internal pressure was previously studied
in [4] by using �nite element method and is also investigated here by employing isogeometric method.
Plane strain condition and von Mises yield criterion are considered. Figure 1(b) shows the contour of the
Mises stress based on the IGA method. For the comparison, the problem is also simulated in ABAQUS
[1] and the stress result is provided in Fig. 1(c).

A B

CD

A B

CD

A B

CD

(a) Problem description (b) IGA result (c) ABAQUS result

Fig. 1: Problem description and stress result comparison. (a) The description and boundary condition
of a thick quarter cylinder, (b) the result from IGA program, (c) the result from ABAQUS.

In the second example, we studied the creep deformation problems of a square plate under various
combinations of boundary conditions, element types and creep stages. Three cases are described as shown
in Figs. 2-4 (a). Material properties including Young's modulus E � 2.0 � 105N{mm2, Poisson ratio
ν � 0.3 and m � �0.5 are used. The total creep time for these tests is set as 1000 hours. The results
of magnitude displacement are calculated by our IGA program and ABAQUS, respectively and shown in
Figs. 2-4 (b) and (c).

From the comparison of the displacement contours given in Figs. 2, 3 and 4, it can be found that
the IGA results agree very well with that of ABAQUS. As shown in Fig. 5, the relationships between
time and the magnitude of displacement for the above creep examples are compared between using IGA
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(a) Problem description (b) IGA result (c) ABAQUS result

Fig. 2: Problem description and displacement result comparison. (a) The description and boundary
condition in secondary creep, (b) the result from IGA program, (c) the result from ABAQUS.
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Fig. 3: Problem description and displacement result comparison. (a) The description and boundary
condition in primary creep, (b) the result from IGA program, (c) the result from ABAQUS.
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Fig. 4: Problem description and displacement result comparison. (a) The description and boundary
condition in secondary creep, (b) the result from IGA program, (c) the result from ABAQUS.

and FEA in ABAQUS, respectively. It can be found that for each example, the displacement-time curves
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obtained by using di�erent methods agree well with each other. Note that the curve in Fig. 5(b) agrees
with the Eq. 2.6(2) which expresses the non-linear relationship between the creep strain rate and time.
While the curves in Figs. 5(a) and 5(c) re�ect the linearity of the Eq. 2.6(1).

(a) Creep problem in Fig. 2 (b) Creep problem in Fig. 3 (c) Creep problem in Fig. 4

Fig. 5: Displacement-time curve for the three creep cases obtained by IGA and FEA in ABAQUS.
Horizontal axis denotes time and the vertical axis denotes the magnitude of displacement on the top
right corner of the square plate.

Conclusions:

In this work, isogeometric analysis has been successfully employed for simulation of viscoplastic and
creep problems. Classical benchmark examples are investigated by using IGA and FEA to verify the
validity of the proposed method. In practical engineering, some mechanical parts are always working
under high temperature, e.g., aeroengine gas turbines. The simulation of such cases should consider the
viscoplasticity of the materials. Therefore, future works will focus on the isogeometric analysis of these
practical problems.
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