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Introduction: 
In recent years, rapid advances in laser scanning technology have made it easier to acquire dense point-
clouds from large industrial plants. Since reliable 3D models or drawings of existing industrial plants 
are rarely obtained due to repeated renovation, point-clouds are very useful for planning renovation 
work. 

However, it is difficult to acquire complete point clouds of industrial plants, because measurement 
positions are limited and occluded regions cannot be avoided when many components are densely 
placed. Therefore, in many cases, it is required to extract each component from incomplete point clouds. 
In industrial plants, standard components such as pipes and flanges are typically used. They consist 
mostly of primitive surfaces, such as planes, cylinders, cones, spheres, and tori. Therefore, existing 
methods in reverse engineering of industrial plants extracted standard components by extracting 
primitive surfaces. In order to accurately calculate dimensions from point clouds, many practical 
systems detect only planes and cylinders, which can be uniquely determined using a small number of 
parameters, and standard components with torus or conic surfaces are estimated using industry 
standards of connected pipes [4]. Fig. 1(a) shows standard components connecting to cylindrical pipes. 
These shapes can be uniquely determined according to the industrial standards if the radii of connecting 
pipes are given.  

However, there may be non-standard components in industrial plants, such as valves and 
manometers. Such components cannot be identified from connecting cylinders or planes. In addition, 
there may be several variations on standard components. For example, the flange may be composed of 
a combination of multiple members connected by bolts. The pipe may be wrapped with thermal 
insulation.  

Furthermore, as shown in Fig. 1(b), the existing method may not be able to estimate the component 
type. This is because component types are estimated using positional relationships between cylinders, 
and complex industrial plants allow for multiple interpretations of pipe routes. 

In this research, we discuss methods for identifying component types using machine learning. Since 
point clouds captured using a terrestrial laser scanner can be mapped on the 2D grid, convolutional 
neural network (CNN) designed for images can be applied to points. In our method, cylinders and planes 
are detected from point-clouds and candidate component regions are extracted. Then component types 
are estimated using CNN. In our method, three types of images are generated from point clouds, and 
they are used for classification. In addition, we introduce a classifier that integrates the three types of 
classifiers. 
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 Fig. 1: Component detection using cylinder and plane: (a) Detection of standard parts from 
cylinders and planes, and (b) Ambiguous pipe routing. 

Detection of Planes and Cylinders: 
The terrestrial laser scanner emits laser beams, whose directions are determined by the azimuth angle 
𝜃 and the zenith angle 𝜙, as shown in Fig. 2. Since the angle intervals are constant, points can be mapped 
on the 2D grid defined by 𝜃 and 𝜙. Therefore, each point clouds can be converted into a 2D image.  

Planes and cylinders can be efficiently detected on the 2D grid using the method proposed by 
Masuda, et al. [3]. In this method, if the distance between adjacent points on the grid is smaller than a 
threshold, these points are segmented into the same region. Then, points are segmented into connected 
regions on the 2D grid, as shown in Fig. 3(b). Next, planes and cylinders are detected using the RANSAC 
method in each region. Since the performance of the RANSAC method [5] largely depends on the size of 
the search region, surfaces are searched only in each connected region. Each time a cylinder or a plane 
is detected, the remaining region is further subdivided into smaller regions. The detection and 
subdivision are repeated until region areas become smaller than a threshold.  Fig. 3(c) shows detected 
planar and cylinder regions.  

Detection of Regions Connecting to Cylinders: 
In the previous research, component types were estimated using the positional relationship of cylinders 
and planes. However, this method limits the variations of detectable component types. In this research, 
we extract regions connecting to cylinders and identify component types using machine learning. 

       

Fig. 2: Points arranged on the 2D plane. 
 

 

Fig. 3: Extraction of planes and cylinders: (a) Point cloud, (b) Segmentation, and (c) Planar and 
cylindrical regions. 

 

                                        
 

Fig. 4: Regions that connect to cylinders. 
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By using detected planes, floors, ceilings, and walls are identified, and they are removed from point 
clouds. Then, regions connecting to cylinders are extracted. Fig. 4 shows pipe regions in green, planer 
regions in blue, and the detected regions in red.  

Generating Images from Points: 
Since a point cloud can be mapped on the 2D grid, the detected regions can also be mapped onto an 
image. However, the image defined by the azimuth angle 𝜃 and the zenith angle 𝜙 is distorted, 
and the linearity of the object is not preserved. Distortion is particularly large at the top and bottom of 
the 2D grid. To solve this problem, a virtual perspective projection plane is placed, and the angle 
coordinate (𝜃, 𝜑) is converted to the coordinate (𝐼, 𝐽) on the perspective projection plane, as shown in 
Fig. 5(a). As shown in Fig. 5(b), the perspective projection image preserves the linearity.  

Each point captured using the terrestrial laser scanner typically has a 3D coordinate, an intensity 
value, and a RGB color. The intensity value represents the strength of a returned laser beam, and it is 
added as an attribute of each point. The intensity value may be an integer or a floating point number 
depending on the laser scanner type. In this research, the intensity value is normalized to an integer 
between 0 and 255. RGB colors are captured using a camera built in the laser scanner, and added to 
points as attributes in the post process. Each RGB color is represented by three integer values [R, G, B] 
from 0 to 255.  The depth value is calculated as the distance between a coordinate and the scanner 
origin. Therefore, three types of images can be generated by writing intensity values, RGB colors, or 
depth values to pixels of an image. Fig. 6(a) shows an RGB image generated from a point cloud. The 
normalization is required for the convergence of CNN. Therefore, Each attribute is nomalized between 
0 to 1.  

Data Augmentation: 
To train a CNN classifier, a large number of images are required. However, it is difficult to obtain point 
clouds of many industrial plants. Therefore, data augmentation techniques are applied to images. Many 
variations of images are generated from the original image by rotating, changing the brightness values, 
adding black and white noises, and inverting.  

To augment depth images, it is effective to transform points and obtain depth images on various 
positions and orientations. However, this approach cannot be applied to partially measured point clouds. 
Therefore, we create CAD models of typical components and generate depth images from the CAD 
models. By changing the position and orientation of the 3D model, a lot of depth images can be 
generated. Depth images are generated by projecting the CAD model onto the perspective projection 
plane. Fig. 6(b) shows a depth image generated from a CAD model.   

              

Fig. 5: Generation of images from point clouds: a) Perspective projection, and (b) Conversion to the 
perspective image. 

      

Fig. 6:  Generation of images from point clouds: (a) RGB image, and (b) Depth image generated from 
CAD model. 
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Feature Extraction and Selection: 
We used VGG16 trained by ImageNet for classification using images. We fine-tuned VGG16 using three 
types of images. Three types of images are separately added to VGG16, and therefore, three types of 
classifiers are obtained. In VGG16, the input image is processed in many layers, and the class type is 
output from the final layer. We extract 1024 features of each image from the fully connected layer 
immediately before the final layer. From the extracted features, effective features are selected using the 
method proposed by Boruta [2]. In this method, false features are generated, and the significance values 
of the true feature and the false feature are compared using Random Forest (RF) to determine whether 
the feature is important. Finally, we define the classifier for components by integrating important 
features extracted from three types of classifiers. 

Experimental Results: 

To evaluate our method, we extracted regions of components from point-clouds of industrial plants, 
and selected elbows, flanges, straight pipes, T-shaped pipes, valves, and pressure gauges, as shown in 
Fig. 7. The numbers of each class data are shown in Tab. 1. One half of the data were used for training 
the classifier, and the other half were used for evaluation. 

We first evaluated single-input classifiers. For comparison, we also evaluated PointNet [1] using the 
same point clouds. Tab. 2 shows the results of single-input classifiers. In this evaluation, the classifier 
using depth images enhanced with CAD models has achieved the best score. This result shows that the 
use of CAD models has significantly improved the accuracy of tees, valves and pressure gauges, whose 
numbers were small. The score of PointNet was the lowest among five classifiers. This might be because 
data augmentation could not be applied to point clouds and the well-trained learned model was not 
available for the PointNet model.  

We also evaluated the effectiveness of feature selection. In our method, features extracted from CNN 
models were reduced according to their effectiveness. Tab. 3 shows comparison between classification 
using all features and classification only using effective features. The result shows that effective features 
were effective for improving the recognition scores. In addition, as a result of using effective features 

 

Fig. 7:  Examples of components. 

 Elbow Flange Straight T Valve Manometer 

Point Clouds 171 161 80 21 43 7 

CAD Data 60 120 80 80 80 80 

Tab. 1:  Number of data for each class. 

 RGB Intensity Depth Depth & CAD PointNet 

Elbow 89.8 % 89.8 % 93.8 % 92.0 % 87.8 % 

Flange 91.8 % 89.9 % 93.0 % 92.9 % 66.7 % 

Straight 93.5 % 95.0 % 92.1 % 95.1 % 77.1 % 

T 50.0 % 40.0 % 55.6 % 66.7 % 42.9 % 

Valve 95.0 % 85.7 % 81.8 % 86.5 % 32.9 % 
Manometer 80.0 % 80.0 % 75.0 % 85.7 % 16.7 % 

Weighted Average 89.8 % 88.1 % 90.1 % 91.2 % 71.5 % 

Tab. 2: F-measures of the single-input classifiers. 
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from CNN models, the accuracy is greatly improved compared to single-input classifiers. This result 

shows that color and geometry are complementary results.  

In industrial plants, there are component types other than those in Fig. 7. Therefore, we accepted 
the result only if the classifier output the result with a probability of 70 % or more. Otherwise, the result 
was rejected. Fig. 8 shows classification results. The blue regions indicate pipes extracted as cylinders. 
Points classified as straight pipes, flanges, elbows, and valves are shown in magenta, red, yellow, and 
green, respectively. Most components were correctly classified, but some distant components were 
incorrectly classified. This result indicates that the classifier requires a sufficient number of points on 
each component.  

Conclusion: 
In this research, we extracted components connected to pipes, and identified their component types 

using machine learning. We trained five types of single-input classifiers using either RGB images, 
intensity images, depth images, augmented depth images, or 3D coordinates. In our evaluation, the 
classifier using depth images augmented by CAD models was the best among the five classifiers. We also 
created multi-input classifiers by integrating features obtained from single-input classifiers. In our 
evaluation, the classifier using RGB, intensity and augmented depth images could achieve the best score.  
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 All Features Effective Features 

Elbow 95.3 % 96.5 % 

Flange 97.5 % 96.3 % 

Straight 96.2 % 96.2 % 

T 60.0 % 73.7 % 

Valve 93.0 % 95.0 % 

Manometer 100.0 % 100.0 
Weighted Average 94.6 % 95.3 % 

Tab. 3: F-measures using all features and effective features. 

                   
Fig. 8: Classification results: (a) Point cloud, and (b) Classification result. 
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