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Introduction: 
The ring is regarded as one of the most traditional and effective buffer structures because of its 
simple manufacture and low cost. It has been widely used in the collision energy dissipation system of 
aircraft, automobiles and other vehicles. And energy-absorbing devices composed of the ring row are 
also applied to the protection of large structures and highways. Early related research focused on the 
large plastic deformation of the ring, such as Deruntz et al. compressed the quasi-static low-carbon 
steel tube radially, and proposed that the ring was deformed into a four-hinge mechanism and its 
bearing capacity was calculated [2]; Yu Tongxi [3] explored the influence of plastic deformation on the 
bearing capacity of the ring by diameter stretching the ring; Sowerby et al. [4] first analyzed the 
influence of the point load on the radial direction of the ring on its deformation. However, when the 
ring collides at a lower speed, only elastic deformation occurs, and the current research on the elastic 
deformation mechanism of the ring is rare. 

Studying the elastic deformation mechanism of the ring on the one hand makes the design of the 
existing ring buffer structure more reasonable by distinguishing between elastic and plastic 
deformation, and on the other hand, it provides a preliminary theoretical basis for the design of the 
new porous energy storage type buffer formed by the ring filling. Therefore, the paper does a detailed 
calculation and analysis of the elastic deformation of thin-walled rings. First, the deformation formula 
of the ring under quasi-static loading and the relationship between dynamic and static compression in 
free-fall condition are established, and the elastic coefficient expression of the ring is obtained. Then, 
the elastoplastic deformation analysis of the ring structure is carried out, and the expression of the 
elastic limit deformation amount is obtained. Finally, with the finite element method, the dynamic 
response law between parameter variables and ring performance under quasi-static loading and in free 
fall is studied and compared with the theoretical calculation results. The comparison results show that 
the simulation results are consistent with the calculated results, which validates the correctness of the 
derived deformation formula. 

Main Idea: 
Quasi-static Compression Deformation Calculation 
The ring of radius R is deformed by a pair of concentrated forces P. Since the geometry and force of 
the ring are symmetrical to the two diameters perpendicular to each other, the deformation of the ring 
and the internal force are also symmetrical about the horizontal and vertical diameters, as shown in 
Fig. 1(a). From the equilibrium condition, the axial force N0=P/2 and the shear force Q0=0. The force 
method is used to solve the bending moment M0. Taking the bending moment M0 as the excess binding 
force, denoted as X1, and obtain the basic static setting system as shown in Fig. 1(b). The corner of the 
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section is indicated by Δ1, and the m-n section does not rotate, that is, Δ1 is equal to zero. So 

1 11 1 1 =0PX                                                                 (1.1) 

where Δ1P is the rotation angle of the m-n section under the action of P/2, and δ11 is the rotation angle 
of the m-n section under the action of the unit force moment. 
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Fig.1: Ring force diagram: (a) Schematic diagram of internal, (b) Quarter ring force diagram. 
 

Using the Mohr integral [5], find the values of Δ1P and δ11 as:  
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where s represents the arc length, E represents the modulus of elasticity and IZ represents the moment 
of inertia of the curved section. Substituting Δ1P and δ11 into Eqn. (1.1), and finding the value of X1. 
Therefore, the bending moment of an arbitrary section of a ring under the action of P/2 and X1 is: 

1 1 2
( ) ( ) (1 cos )  (cos )

2 2 2

PR PR
M PR                                  (1.4) 

For round curved bars, if the central angle is expressed by θ, modifying the flexure differential 
equation of the ring [1] obtained by the card theorem according to the definition of the positive and 
negative directions of the above bending moment, and substituting the bending moment with Eqn. 
(1.4). Get the equation as 

2 3 3
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                                                      (1.5) 

where w is the radial displacement of the centerline (deflection) of the ring. Eqn. (1.5) is a second order 
constant coefficient linear differential equation. The radial displacement expression of any point on 
the ring subjected to the radial force P is obtained according to the boundary conditions: 

3 4
(cos sin )

4 Z

PR
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EI
                                                       (1.6) 

When the cross section of the ring is a rectangle of length b and thickness t, the inertia IZ=bt3/12. 
According to the Eqn. (1.6), the elongation of the ring diameter CD is obtained as follows: 

3

3
1.664x

PR

Ebt
                                                                 (1.7) 

The shortening of the ring diameter AB is:  
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The ring elasticity coefficient k is: 
3

1.776y

P Eb t
k

R
                                                              (1.9) 

Calculation of Free-Falling Deformation and Calculation of Elastic Deformation Limit 

The ring with a mass of m and an elastic coefficient of k falls free from a place where the vertical 
distance of the ring's bottom away from the rigid ground is h. Under the condition that no plastic 
deformation occurs, the ring will undergo slight deformation and then the deformation bounce will 
resume. It is assumed that the ring can compress its structure to the rest position after touching the 
ground, and the compression amount reaches the maximum, which is recorded as dm. According to the 
law of conservation of energy and Hooke's law, the maximum compression dm of the ring structure is 
obtained as: 

2
m

mgh
d

k
                                                                     (2.1) 

When the material is statically compressed within the elastic limit range, its static deformation δs is: 

s

mg

k
                                                                          (2.2) 

Therefore, dm can be expressed as static deformation δs as: 

2m sd h                                                                       (2.3) 

Some of the theories and calculations in this paper are based on linear elastic deformation, so the 
elastic deformation limit is needed. From the analysis of Eqn. (1.4), it can be seen that on the whole 
ring, when θ=π/2 or θ=3π/2, |M(θ)| is the largest. The elastic deformation range is |M(θ)|<Me, and Me is 
the elastic limit bending moment [1]. Calculated to obtain:  

2

6
sbt

P
R

                                                                     (2.4) 

where b is the length of the ring, t represents the thickness, and σs is the yield strength of the material. 
Substituting Eqn. (2.4) into Eqn. (1.8), the elastic limit deformation of the ring is calculated that: 

2

[ ] 0.93 sRd
Et

                                                                 (2.5) 

From Eqn. (2.5), the elastic limit deformation of the ring is related to the yield strength and elastic 
modulus of the ring material and the outer radius and thickness of the ring. The greater the yield 
strength of the material, the greater the elastic limit deformation of the ring, so in the actual 
application, the material with better elasticity can be selected. 
Simulation of Ring Deformation under the Action of Radial Concentration Force 
Create a semi-circular plane model with thickness t=5mm and outer radius R=100mm. Assuming that 
the elastic modulus of the material is EX=2e3N/mm2, Poisson-Pine ratio is PRXY=0.3. After applying the 
load, the post-processing module can display deformation and stress results.  

In order to explore the relationship between the compression deformation of the ring and the ring 
parameters, change the parameter values for each simulation in the command flow, and get the Tab. 1. 
The first group shows the value of the ring compression δY after the pressure P changes. The result of 
fitting with MATLAB is δY=-1.445P-0.0005307, besides the SSE and constant terms are very close to zero. 
Therefore, δY and P are in a linear function relationship. Select the 2nd set of data, the fitting result is δY 
=-7.61/b, the SSE is 5.164e-24, close to zero, indicates δY is inversely proportional to b. Fitting the δY-t 
curve, shows that δY =-693.3t -2.974, So δY and t are power function relationships, exponent is -2.974, close 
to -3. The fitting result of R is δY =-5.931e-06*R 2.994, δY and R are power function relationships same as t, 
but exponent is 2.994. Compared with the Eqn. (1.8), we can draw a conclusion that the amount of 
compression deformation δy is in a linear function relationship with pressure P and inversely 
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proportional to b. The reality is very consistent with the theory, indicating that the theoretical 
calculation formula is correctly derived. 

However, there is an error in the relationship between the outer radius R, the thickness t and δY. 
Change the value of R/t for each simulation and compare the results with the values calculated by the 
Eqn. (1.7) and (1.8) to analyze the effect of R/t changes on errors. As shown in Tab. 2.  

 

Group Serial number Outer radius R Thickness t Length b Force P 
Compression 

deformation δY 

1 

1 100  5.0 10  4   -5.779    
2 100  5.0 10  8   -11.558    
3 100  5.0 10  20   -28.896    
4 100  5.0 10  40   -57.792    

2 
5 100  10.0 1  4   -7.610    
6 100  10.0 2  4   -3.805    
7 100  10.0 10  4   -0.761    

3 
8 100  5.0 10  4   -5.779    
9 100  2.5 10  4   -45.445    
10 100  2.0 10  4   -88.243    

4 

11 50  5.0 10  4   -0.724    
12 150  5.0 10  4   -19.450    
13 200  5.0 10  4   -46.023    
14 250  5.0 10  4   -89.779    

 
Tab. 1: Ring compression deformation with different parameter values. 

 

 
Outer 

radius R 
Thickness 

t 
Length 

b 
Compression 

deformation δY 
Elongation 

deformation δX 
Calculated 

value δY 
Calculated 

value δX 

1 50 5 10 -0.724 0.312 -0.710 0.329 
2 60 5 12 -1.252 0.545 -1.228 0.568 
3 75 5 15 -2.442 1.074 -2.398 1.110 
4 100 5 20 -5.779 2.568 -5.683 2.630 
5 125 5 25 -11.271 5.040 -11.100 5.138 
6 250 5 50 -89.779 40.668 -88.800 41.100 
7 300 5 60 -155.050 70.382 -153.450 71.021 

 
Tab. 2: Simulation and calculation results of rings with different R/t values. 

 
Calculate the relative error according to the results in Tab. 2. The results are represented by a polyline 
chart, as shown in Fig. 2. It can be clearly seen from the figure that as the values of radius and 
thickness gradually increase, the relative errors in both directions become smaller and smaller. That’s 
because the theoretical calculation uses a thin-walled ring, which considers the ring as linear. 
Therefore, the larger the ratio of radius to thickness, the closer it is to linearity, and the closer it is to 
the theoretical calculation. 
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Fig. 2: Deformation amount relative error line chart. 
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Numerical Analysis and Elastoplastic Analysis of Free Fall Ring 
Specify the analysis type as LY-Dynamic analysis, establish a cylindrical shell solid model with inner 
radius r=90mm, wall thickness t=10mm, length b=200mm, ρ=7.82e-9t/mm3, E=21.1e4N/mm2 and 
μ=0.288. Establish a desktop model 10mm from the bottom end of the cylinder, i.e. a rigid plane. The 
initial velocity of 2384.1141mm/s is applied to all nodes of the ring (which is the speed from the free 
fall of 290mm), and set the gravity acceleration to 9800mm/s2. Set analysis time, calculate output 
parameters, energy consumption control, and then solve the model. 

Entering the post-processor, generating a stress change animation of the thin-walled tube falling 
on the ground with time, the animation shows that the thin-walled ring has slightly deformed after 
contacting the ground, and then restores to the original shape. Use the capture animation command to 
get Fig. 3(a). The figure shows that the maximum displacement of the thin-walled tube is 11.1483mm. 
Because the initial distance is 10mm, the thin-walled tube has a compression deformation of 
1.1483mm. After entering the time process, the processor generates a displacement diagram of a node, 
as shown in Fig. 3(b). The node drops in the first 0.00465 seconds, and then rebounds to the lowest 
point and then rebounds. The highest point after the rebound is less than the starting point, and the 
displacement change is at most -11.1467mm. 

 

                   0.0000 0.0025 0.0050 0.0075 0.0100

-11.25

-10.00

-8.75

-7.50

-6.25

-5.00

-3.75

-2.50

-1.25

0.00

 

 

D
is

p
la

c
e
m

e
n
t 

(m
m

)

Time (s)

 
 
Fig. 3:  Process result: (a) Displacement animation capture image, (b) Node displacement change. 

 
In the above example, the thin-walled circular tube is deformed after landing, and the original shape is 
restored after the rebound, indicating that elastic deformation has occurred. When the drop height is 
changed to 1000m, the circular tube is obviously plastic deformation, theoretically deducing the height 
of the thin-walled circular tube for elastic limit deformation.  

2 2430 100
[ ] 0.93 =0.93 1.895 3

211 000 10
sRd
Et

 mm 
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t R

 mm 

Therefore: 
2 2 2[ ] 1.895 3

466.5
2 2 2 0.003 85

d d
h  mm 

That is to say, when the drop height H≤466.5mm, the thin-walled circular tube is elastically deformed, 
otherwise plastic deformation occurs. 

Changing the height of the thin-walled tube from the ground, and obtain the maximum 
displacement of the thin-walled tube under different H. According to the data, the maximum 
compression amount will be plotted with height H, as shown in Fig. 4, where the blue color point is the 
data, and the red curve is the function curve fitted by the data in the elastic range. It can be seen from 
the figure that as the height increases, the difference between the simulated data value and the fitted 
curve becomes larger and larger, because it undergoes plastic deformation, which is different from the 
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elastic deformation mechanism. However, when the height is 1000 mm, although it is greater than 
466.5 mm, the simulation results are still not much different from the fitting results. The reason for 
the analysis is that only the elastic limit bending moment Me is considered in the above calculation, and 
the plastic limit load M is not considered. In the range of Me to M, although the outer fiber of the thin-
walled circular tube has entered the plastic yielding stage, since the middle part is still in the elastic 
stage, the deformation characteristic of the "flat section" limits the plastic deformation of the outer 
layer fiber, so they are in the state of constrained plastic deformation. Therefore, when the height is 
1000 mm, it can also conform to the elastic deformation curve. 
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Fig. 4: Maximum compression at different heights. 
 

Conclusions: 
When the ring is elastically deformed under quasi-static compression, the relationship between 

compression deformation and the force is 
3

3
1.776y

PR

Ebt
, the elastic coefficient of the ring buffer cell 

is 

3

1.776

Eb t
k

R
; under free falling , the relationship between the maximum of dynamic compression 

dm and the static compression amount δs is 2m sd h . The elastoplastic deformation analysis of the 

ring buffer structure is obtained, and the elastic limit deformation 
2

[ ] 0.93 sRd
Et

. The dynamic 

response of the ring structure under quasi-static compression and free falling is simulated by ANSYS, 
and compared with the calculation results, the correctness of the above theoretical calculation formula 
is verified. The formula for calculating the elastic deformation of the ring provides a reference for the 
design of the energy storage buffer, which provides a theoretical basis for further research on the 
elastic deformation of the ring.  
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