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Introduction:

Topological changes are common in problems where interfaces evolve with time, such as solidi�cation, void
nucleation or shape optimization. If the evolving boundaries are represented explicitly, then modeling
topological changes for arbitrary interfaces becomes challenging, requiring contact detection and surface-
surface intersection. Thus, implicit representations of the boundary provided by the phase �eld or level
set methods are often used to accommodate large topological changes. Such implicit representations also
implicitize physically relevant geometrical parameters such as normals and curvatures and recover the
exact interface geometry only in the limit of mesh re�nement. In this paper, an explicit boundary tracking
method is introduced which allows topological changes such as coalescence without requiring collision
detection and intersection computations. The problem of interest is that of void coalescence in a metal
line subject to high current density (referred as electromigration). Analysis is performed by capturing
the in�uence of the void interface as an enrichment to the electric �eld approximation de�ned over the
domain [8]. This in�uence weakens as we move away from the void. Thus a measure of distance from
the void interface is required. Conventionally, such distance estimates are obtained either using iterative
techniques such as Newton-Raphson [4], or by generating polytope approximations of the geometry [1].
However, numerical iterations are computationally expensive and often not smooth for analysis purposes,
while polytope approximations lose geometric exactness to CAD of the phase interface and are accurate
only in the limit of re�nement. Here, signed algebraic level sets are generated by implicitizing the void
interface using resultant theory [5, 9]. These level sets act as smooth surrogates of distance and are exact
in the neighborhood of the geometry. Further for closed geometries the sign of these level sets can be
used to classify points as lying inside or outside the geometry [10], thus determining the phase at a point.

In this paper, topological changes in the phases are modeled through algebraic Boolean operations on
the level sets. These Boolean operations are performed using R-functions [6, 10] to ensure smoothness and
geometric accuracy of the composed level sets and avoid the need for contact detection and computation
of intersection of void surfaces during analysis. Prior work using algebraic Boolean operations using
R-functions for analysis exist in the literature. In [2, 11], Boolean operations were used during topology
optimization to combine free-form geometries with embedded regular-shaped primitives. In general,
algebraic Boolean compositions of complex free form parametric geometries do not appear to exist except
for that in [10]; they carried out Boolean operations on algebraic level sets constructed on complex
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parametric CAD geometry. These were then used for static thermal and mechanical analysis.
This extended abstract is divided as follows. First, implicitization of parametric surfaces using the

Dixon resultant is discussed. This is followed by the procedure to generate algebraic level sets for paramet-
ric geometries. Next, we discuss the electromigration problem and its formulation. Finally a discussion
on using Boolean operations on the level sets to e�ect topological changes such as coalescence is provided.

Implicitization Using the Dixon Resultant:

Curves and surfaces can be expressed with an implicit or parametric representation. Most CAD systems
use parametric representations such as Non-Uniform Rational B-Splines (NURBS), which provide a more
general as well as intuitive control of the geometry for users. On the other hand, the implicit representation
of a surface allows natural generation of level sets that increase monotonically with distance, thereby
serving as a surrogate of distance that is necessary for analysis of behavior. It is hence desirable to obtain
the equivalent implicit representation for a given parametric curve or surface. This can be done using the
Dixon resultant [3] from Elimination theory, as shown in [5]. Resultants are polynomial expressions on
the coe�cients of a given system of polynomial equations. The given system of equations have a common
solution only if their resultant vanishes. A procedure to compute the Dixon resultant shall be discussed
presently. While the procedure described is for three-dimensional surfaces, it can be readily adapted for
planar curves. Rational parametric representations such as Bézier and NURBS have the general form,

x(u, v) =
X(u, v)

W (u, v)
, y(u, v) =

Y (u, v)

W (u, v)
, z(u, v) =

Z(u, v)

W (u, v)
(2.1)

where, X,Y, Z,W are functions in the parameters (u, v), with degree m in u and n in v. De�ne,

δ(x) =
1

(u− α)(v − β)

∣∣∣∣∣∣
xW (u, v)−X(u, v) yW (u, v)− Y (u, v) zW (u, v)− Z(u, v)
xW (u, β)−X(u, β) yW (u, β)− Y (u, β) zW (u, β)− Z(u, β)
xW (α, β)−X(α, β) yW (α, β)− Y (α, β) zW (α, β)− Z(α, β)

∣∣∣∣∣∣
Since the determinant is zero whenever u = α or v = β, (u−α) and (v−β) are factors of the determinant
and have hence been factored out. For points on the surface, using Eq.(2.1) gives

δ(x) = 0 ∀ α, β ∈ R (2.2)

Now, the quantity δ depends on α, β, u and v, and can be expanded to separate these factors as,

δ =
[
1 α α2 · · · αm−1β2n−1

]
[MD(x)]

[
1 u u2 . . . u2m−1vn−1

]T
= [α][MD(x)][u] (2.3)

For the determinant to vanish for all α, β, we require,

[MD(x)][u] = 0 (2.4)

|MD(x)| = 0 (2.5)

This forms a necessary condition for a point to lie on the parametric surface and can act as its implicit
equation. The 2mn× 2mn determinant in Eq. (2.5) is the Dixon resultant [3].

Signed Algebraic Level Sets:

The Dixon resultant derived in Eq. (2.5) allows the generation of the level sets [9],

Γ(x) = |MD(x)| (2.6)
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(a) (b) (c)

Fig. 1: Algebraic level sets for an octant of a sphere generated from (a) Dixon resultant and (b) after the
trimming operation. (c) Signed level sets for a sphere generated using the bounding box procedure.

The generated level sets for an octant of a sphere are shown in Fig. 1a. It can be seen that while
the parametric surface is restricted to just an octant, the resultant generates level sets over the entire
parametric range, i.e., for the entire sphere. It is hence required that the implicitization is restricted to
the required parametric domain. This is achieved using a trimming procedure based on R-functions [1, 6].
The convex hull of the parametric surface, de�ned by the �eld Φ(x) ≥ 0, is used as the trimming region.
The resultant is �rst normalized to allow composition with the hull distance �eld. The normalized
resultant is de�ned as,

f(x) =
Γ(x)

‖∇Γ(x)‖
(2.7)

The trimmed distance �eld, g(x), is now given by the R-function [7],

g(x) =

√
f2 +

(|Φ| − Φ)
2

4
=

{
|f(x)| Φ(x) ≥ 0√
f2 + Φ2 Φ(x) < 0

(2.8)

Within the trimming region, the original implicitization is recovered, while outside the region a composite
�eld is obtained. Usage of the R-function ensures that the subsequent distance �eld is smooth. Trimmed
level sets generated for the sphere octant are shown in Fig. 1b; it can be seen that the level sets are
globally monotonically increasing.

For parametric splines such as NURBS, Eq. (2.1), and therefore the resultant, change with each knot
span. Such splines are decomposed into their Bézier segments, trimmed distance �elds are obtained for
each Bézier segment and R-disjunction [6] of these distance �elds is used to generate a smooth distance
�eld for the parametric spline.

Closed geometries divide the space into inside and outside regions, thereby allowing de�nition of
signed algebraic level sets. As a convention, distances in the inside region are assumed positive and
those outside, negative. Signed level sets can be used to resolve point containment queries, required in
multi-body contact and interference detection. A bounding box procedure is used to handle containment
queries in a point-by-point basis [10]. A close-�tted bounding polygon is constructed for the closed spline
geometry, from the convex hulls of individual Bézier components. For each Bézier component, the sign of
the Dixon resultant Γ is set such that the resultant is negative for control points that lie on the bounding
polygon (and hence outside the geometry). This is a one-time process for a given geometry. During sign
determination, the point of interest is �rst classi�ed with respect to the bounding box. If the point is
outside the bounding box, then it is also outside the given geometry and its distance can be taken to be
negative. Query points that lie inside the bounding box are then classi�ed with respect to the convex
hulls of the Bézier components. If the point lies inside any of the hulls, then the sign of the distance
is the same as the sign of the Dixon resultant of the corresponding Bézier component, evaluated at the
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(a) (b) (c)

Fig. 2: Contours of the electric potential solution for a system with (a) single void (c) two overlapping
voids. (b) Algebraic level sets for a multiple void system generated using R-Function Boolean operations

point of interest. If the query point does not lie inside any of the individual convex hulls, but lies inside
the bounding box, then it lies inside the closed geometry and its distance can be taken to be positive.
Signed algebraic level sets for a sphere are given in Fig. 1c as an example.

Current Through a Line with a Void:

As an application, the electrostatic problem of a line with a void is considered. This is of relevance
in studying void growth due to electromigration, a failure concern in the semiconductor industry. A
rectangular domain Ω with an arbitrarily shaped void is considered. To allow irregular shapes, voids are
represented using NURBS. The electric potential φ is solved for from the Laplace equation, ∆φ = 0 in Ω.
Dirichlet boundary conditions are applied at the top and bottom surfaces, and no electric �ux is assumed
to �ow through the walls. Additionally, there is no �ux entering or exiting the surface of the void Γ,

∂φ

∂n
= 0 on Γ (2.9)

Here, an enriched isogeometric approach is used [8], where the potential is expressed as a weighted
blending of a continuous approximation φc, and an enrichment φe representing the in�uence of the void,

φ(x) = (1− w(x))φc(x) + w(x)φe(P(x)) (2.10)

Here, P(x) is the projection of x on to the void interface. Thus, the potential solution φc at x is blended
with the interface solution φe at the projection of x on the void interface. The weight function w(x) is
de�ned such that it is 1 on the void surface and falls monotonically with distance away from the surface,

w(x) = exp
(
−(d/d0)2

)
(2.11)

where d0 is a scaling parameter for the distance �eld d(x). Since the void is represented as a NURBS
curve, a signed distance �eld can be obtained using the algebraic level sets described in this work. This
form of the electric potential automatically satis�es the void boundary condition Eq. (2.9). The system
is solved using isogeometric analysis for an elliptical void, and the resulting potential solution is shown
in Fig. 2a. The potential lines are distorted around the void to satisfy Eq. (2.9), but una�ected far away.

Boolean Operations for Multiple Void Systems:

Complications in electromigration problems usually arise when multiple voids interact. These voids can
merge and separate, and this poses a challenge for explicit interface representations. Such representations
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usually require detection of overlap between multiple voids and computation of their intersections, which
are challenging problems for arbitrarily shaped voids. In this work, this problem is circumvented by using
Boolean operations on the algebraic level sets. A Boolean union operation is used to generate level sets
of a coalesced void from the algebraic level sets of individual voids. Since the analysis procedure depends
only on the algebraic level sets, interacting voids can be easily accommodated without requiring collision
detection and intersection computations. The union operation is carried out using the R-disjunction
operation [6]. If g1(x) and g2(x) are the signed distance �elds of two coalescing voids, then the union of
these �elds is given by,

g(x) = g1 ∨ g2 = g1(x) + g2(x) +
√
g21 + g22 (2.12)

By nature of R-disjunction, the resultant �eld is positive when either �eld is positive; this ensures that
the region inside the coalesced void is positive. This is depicted in Fig. 2b. The usage of R-functions
ensures that the composed �eld is smooth, allowing analysis. The solution for the electric potential for
two merged elliptical voids is provided in Fig. 2c.

Conclusions:

The Dixon resultant was used to generate algebraic level sets for parametric geometries. These level sets
provided a measure of distance from the geometry, and were signed allowing point containment queries.
An enriched isogeometric analysis method for the current in a line with a void was discussed, where
the void was modeled as an enrichment whose in�uence weakened with distance. It was shown that
topological changes such as coalescence could be handled through Boolean operations on the algebraic
level sets, without having to resort to overlap detection and intersection computations. The developed
procedure provides the bene�ts of using explicit interface representations without requiring intersection
computation to model topological changes.
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