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Introduction: 
For controlling curvature variation as much as possible with given 𝐺1  or 𝐺2  Hermite conditions, we 
propose intrinsically defined planar curves based on explicit Bézier curvature functions.  In the proposed 
curve, the curvature variation is specified by an explicit Bézier curve.  To perform 𝐺1 or 𝐺2 Hermite 
interpolation, some of control curvatures of the explicit Bézier curve is modified to fit the given 
condition.  The designer can directly change the curvature variation of the curve by modifying some of 
control curvatures satisfying given 𝐺1 or 𝐺2 Hermite conditions.  We clarify how the viable regions for 
𝐺2 Hermite interpolation changes depending on the degree of explicit polynomial Bézier curves.  We 
have implemented the method in C++ and confirmed that curves can be generated fully interactively.  
Applications of the proposed curves include the design of aesthetic curves for aesthetic surfaces as well 
as 2D illustrations. 

Related Work: 

Freeform curves, such as Bézier curves and NURBS curves, are widely used in many applications 
including CAD system.  In freeform curves, the curve shape in terms of a polynomial or rational form is 
determined by control points, either explicitly or implicitly.  We are able to know the + 

 

curvature variation after the curve shape is completely determined by computing the derivatives.  In 
this research, we represent the curvature function in terms of an explicit (polynomial or rational) Bézier 
curves and the curve is generated by integrating the curvature function.  Our approach is most closely 
related to [4], but our approach is different in that we use explicit Bézier curves and clarify some 
characteristics including experimental viable regions.   Our approach is more efficient than [4] because 
we show that arc length can be determined by  𝐺1 or 𝐺2 Hermite conditions.  Therefore, arc length is not 
included in optimization parameters.  Wu et al.’s work [5], where the curvature radius function is 
represented by cubic polynomials, is also related.  Although no numerical integration is required in their 
approach, inflection points cannot be represented.  Numerical integration is required once to generate 
a curve in our approach, we confirmed that the curve can be generated fully interactively.  Log-aesthetic 
curves [6] are high quality curves whose curvature functions are relatively simple functions with 
monotonically varying curvature.  However, when performing  𝐺2 Hermite interpolation, they cannot 
match a wide variety of  𝐺2 Hermite conditions.  This work can be considered as a generalization of 
curvature functions in terms of explicit polynomial and rational Bézier curves. 
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Curves based on Explicit Bézier Curvature Functions: 
Let 𝑠𝑡  be the length of a curve segment.  Let 𝑛 be the degree of an explicit Bézier curve and  𝜅𝑖(𝑖 =
0,1,⋯ , 𝑛) be the control curvatures.  An explicit polynomial Bézier curvature function 𝜅(𝑠) in terms of arc 
length 𝑠 is defined by 

𝜅(𝑠) = 𝑠𝑡 𝐾(𝜏)  (𝑠 ∈ [0, 𝑠𝑡]),     𝐾(𝜏) = ∑𝐵𝑖
𝑛(𝜏)

𝑛

𝑖=0

 𝜅𝑖   (𝜏 ∈ [0,1]), (1) 

where 𝐵𝑖
𝑛(𝜏) is the Bernstein polynomial.  An explicit rational Bézier curvature function 𝜅𝑅(𝑠) is given by  

𝜅𝑅(𝑠) = 𝑠𝑡 𝐾𝑅(𝜏)  (𝑠 ∈ [0, 𝑠𝑡]),    K𝑅(𝜏) =
∑ 𝐵𝑖

𝑛(𝜏)𝑛
𝑖=0  𝑤𝑖𝜅𝑖

∑ 𝐵𝑖
𝑛(𝜏)𝑛

𝑖=0  𝑤𝑖
   (𝜏 ∈ [0,1]). (2) 

We use 𝜅𝐺(𝑠) to mean either 𝜅(𝑠) or 𝜅𝑅(𝑠).  We also use K𝐺(𝜏) to mean 𝐾(𝜏) or K𝑅(𝜏).  Tangential angle 
𝜃 (𝑠) can be computed by 

𝜃 (𝑠) = ∫ 𝜅𝐺(𝑡)d𝑡.
𝑠

0

(3) 

Note that the integration of Eqn. (3) can be computed in closed form if  𝜅𝐺(𝑠) is an explicit polynomial 
Bézier curvature function.  The curve position  𝐏(𝑠) in the standard form, where 𝐏(𝑠) is at the origin if 
s = 0  and its tangent vector is [1 0]T, is computed by 

𝐏(𝑠) =

[
 
 
 
 ∫ cos 𝜃 (𝑠)d𝑡

𝑠

0

∫ sin 𝜃 (𝑠)d𝑡
𝑠

0 ]
 
 
 
 

. (4) 

The curve in general position can be obtained by performing an appropriate similarity transformation 
to curve generated by Eqn. (4). 

𝑮𝟏 or  𝑮𝟐 Hermite interpolation Method: 

In 𝐺1 Hermite Interpolation in the standard form, two points 𝐏𝑠 , 𝐏𝑒 and their tangents 𝐭𝑠 , 𝐭𝑒 are given.  𝜃𝑑 
is the angle between 𝐭𝑠 and 𝐭𝑒.  See Fig. 1.  If all the control curvatures 𝜅𝑖 are given, the arc length of the 
curve segment 𝑠𝑡 can be computed by  

𝑠𝑡 =
𝜃𝑑

∫ 𝐾𝐺(𝑡)d𝑡
1

0

. (5) 

Note that in case if 𝐾𝐺(𝑡) is an explicit polynomial Bézier function, 𝑠𝑡 can be simply computed by 

𝑠𝑡 =
𝜃𝑑(𝑛 + 1)

∑ 𝜅𝑖
𝑛
𝑖=0

. (6) 

If 𝐾𝐺(𝑡) is a rational function, numerical integration is required to compute 𝑠𝑡. 

Since Eq. (4) is in standard form, the positional constraint 𝐏(0) = 𝐏𝑠 and the tangential constraint  
d𝐏(𝒔)

d𝑠
|
𝑠=0

= 𝐭𝑠   at the start point s = 0 are automatically satisfied.   The endpoint tangential condition 

d𝐏(𝒔)

d𝑠
|
𝑠=𝑠𝑡

= 𝐭𝑒 is satisfied by using arc length 𝑠𝑡 computed using Eqn. (5).  The remaining condition for 

satisfying 𝐺1 Hermite condition is 𝐏(𝑠𝑡) to be equal to 𝐏𝑒.  We satisfy this condition by an optimization 
using two of 𝜅𝑖, typically 𝜅0 and  𝜅𝑛, as optimization parameters.  Other control curvatures are either 
user-specified or interpolated using 𝜅0 and  𝜅𝑛.   If we use a linear interpolation to compute 𝜅1, ⋯ , 𝜅𝑛−1, 
the generated curve will be the Clothoid curve. 

In 𝐺2 Hermite interpolation, curvature κ𝑠, κ𝑒 of start and end points are specified in addition to 𝐺1 
Hermite interpolation conditions.  𝐺2 Hermite interpolation is performed in a similar manner by setting 
κ0 = κ𝑠  and κ𝑛 =  κ𝑒 .  𝜅1  and  𝜅𝑛−1  are typically used as optimization parameters and other control 
curvatures are either user-specified or interpolated  using 𝜅0 and  𝜅𝑛.  Note that any 𝐺2 (and 𝐺1) Hermite 
condition can be converted to the standard form shown in Fig. 1 by an appropriate similarly 

http://www.cad-conference.net/


325 
 
 

 

Proceedings of CAD’19, Singapore, June 24-26, 2019, 323-327 
© 2019 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

transformation.  If two endpoints    are uniformly scaled by a factor 𝜎, the curvature at both endpoints 

must be scaled by a factor 
1

𝜎
. 

 

Fig. 1: 𝐺1 Hermite Interpolation in the standard form. 

Inflection Points and Curvature Monotonicity: 

The curve generated by the proposed method may include an inflection point and the curvature may 
not to be monotonically varying.  The existence of an inflection point can be checked by applying Bézier 
clipping [3] to κ𝐺(𝜏) where 𝜏 ∈ [0,1].   If the degree of κ(𝜏) is low, we can directly compute 𝜏 such that 
κ(𝜏) = 0.  If κ𝐺(𝜏) becomes 0 and  𝜏 ∈ [0,1], the curve includes an inflection point within the curve segment. 

The curvature of the curve is monotonically varying if the first derivative of κ𝐺(𝜏) does not change 
its sign within 𝜏 ∈ [0,1].  The monotonicity of curvature can be similarly checked by applying Bézier 
clipping to see if there is a sign change within 𝜏 ∈ [0,1].  If there is a sign change, the curvature of the 
curves is not monotonically varying. 

In case that an inflection point is not preferable, a user can move control points and/or control 
curvatures.  Similarly, if a user wants the curvature to be monotonically varying and if the curve is not, 
the user can move control points and or control curvatures so that the curvature to be monotonically 
varying.  In case of using a rational curvature function, the user can also change the weights of the 
rational function. 

Results: 

Fig. 2 shows various planar curves based on explicit polynomial Bézier curvature functions.  Fig. 2 (a) is 
an example of linear curvature function.  The generated curve is the Clothoid.   Fig. 2 (b) is an example 
where the curve has an inflection point.  Fig. 2 (c) and (d) are examples of using cubic Bézier curvature 
functions.  The constraint of κ0 = κ1 = κ2 is used in (c) , whereas in (d) the constraint of κ1 = κ2 = κ3 is 
used.   Fig. 2 (e) and (f) are similar examples but quantic Bézier curvature functions are used.  The 
constraint of κ0 = κ1 = κ2 = κ3 = κ4 is used in (e), whereas in (f) the constraint of κ1 = κ2 = κ3 = κ4 = κ5 is 
used.  Fig. 2 (g) is an example of using cubic Bézier curvature function where the constraint of 

κ0 = κ1, κ2 = κ3 is given.  Thus in (g), 
𝑑κ

𝑑𝑠
= 0 at both endpoints.  Harada et al. have pointed out that in 

many aesthetically pleasing connection between curve segments, the first derivative of curvature 
become 0 [2].  Thus the example of (g) may be important for aesthetically pleasing connection between 
segments.   Note that in Fig. 2 (a), (c-g),  the same 𝐺1 Hermite condition is used.  See various kinds of 
curvature variation can be generated for the same 𝐺1 Hermite condition.  Fig. 2 (h) shows an example of 
𝐺2 Hermite interpolation using cubic curvature function. 

For 𝐺2  Hermite interpolation, there is no guarantee that the curvature of generated curve is 
monotonically varying as shown in Fig. 3 (a).  As shown in Fig. 3 (b) by appropriately modifying weights, 

we can generate a curve with monotonically varying curvature with the same 2G  Hermite condition.  

Thus by using rational functions, the generate curves can much more variety of 𝐺2 conditions than using 
polynomial functions if the degree is the same. 

Ps

Pe

te

 
q

d

ts
x

y

http://www.cad-conference.net/


326 
 
 

 

Proceedings of CAD’19, Singapore, June 24-26, 2019, 323-327 
© 2019 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

For curves based on explicit polynomial Bézier curvature functions of degree 3, 5 and 10, Fig. 4 (b), (c), 
(d) shows experimentally generated 𝐺2 Hermite region of κ𝑠, κ𝑒 where curves with monotonically varying 
curvature can be generated for the given 𝐺1 Hermite condition shown in Fig. 4 (a).  κ1, κ𝑛−1 are used as 
optimization parameters and κ2, ⋯, κ𝑛−2  are linearly interpolated using κ1  and κ𝑛−1 .  The hyperbolas 

shown in (b), (c), (d) shows the theoretically viable region where curves with monotonically varying 
curvature exists [1].  As the degree of the explicit Bézier curvature function gets higher, the viable region 
also gets larger. 

        
                (a) Linear                                                           (b) Linear with an inflection 

          
                           (c) Cubic  (κ0 = κ1 = κ2)                                      (d) Cubic (κ1 = κ2 = κ3) 

 
                    (e) Quintic (κ0 = κ1 = κ2 = κ3 = κ4)         (f) Quintic with an inflection (κ1 = κ2 = κ3 = κ4 = κ5)               

 

                       (g) Cubic (κ0 = κ1, κ2 = κ3)                            (h) Cubic, 2G  Hermite (κ𝑠 = 0.5, κ𝑒 = 1.5) 

Fig. 2:  Generated curves based on explicit Bézier curvature functions. 
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Conclusions: 

This paper proposed planar curves based on explicit polynomial or rational Bézier curvature functions.  
Future work includes clarifying 𝐺2 Hermite regions for rational curvature functions. 
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(a) 𝐺2 Hermite using polynomial Bézier        (b) 𝐺2 Hermite using rational Bézier 

Fig. 3:  𝐺2 Hermite Interpolation using polynomial and rational Bézier curves (κ𝑠 = 0.5, κ𝑠 = 2.0) . 

 

 

    
      (a) Hermite condition                  (b) 𝑛 = 3                    (c) 𝑛 = 5                 (d) 𝑛 = 10                          

Fig. 4:  𝐺2 Hermite region for curves based on explicit polynomial Bézier curvature functions. 
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