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Introduction: 
3-D Printing, also referred as Rapid Prototyping (RP) or Additive manufacturing (AM) is a fundamentally 
different process from conventional manufacturing techniques. 3-D Printing integrates Computer Aided 
Design (CAD), Materials Science and Computer Numerical Control (CNC) to fabricate physical prototypes 
from virtual models directly by depositing material in the form of layers. The process fabricates 3-D 
parts by deposition of layers in 2-D using three linear motions in the Cartesian axes. The layer-based 
fabrication approach has many advantages such as simplified tool-path planning and capability to 
manufacture complex parts which cannot be built by conventional processes. Nevertheless, it suffers 
from drawbacks such as stair-casing (aliasing) effect, varying structural properties along different build 
directions, support structure requirements and inability of building around inserts which limits its 
potential as an alternate to conventional manufacturing processes [3].   

In the context of varying structural properties and design of 3-D printed components, automated 
technique such as deformation control [2], physical appearances [4] and innovative design such as 
balancing shapes [7] have been reported in the literature. It has been observed that build orientation has 
major impact on strength properties of 3-D printed components due to induced anisotropy in the 
material. This intricacy has been observed and experimentally demonstrated [1] but very few attempts 
are reported that aims at enhancing structural robustness of 3-D printed components. Thompson and 
Crawford [9] introduced direction selection algorithm with loading conditions and material properties 
using Tsai-Wai failure condition to determine safer designs for a given build orientation. Umetani and 
Schmidt [11] addressed structural anisotropy in Fused Deposition Modeling (FDM) with the assumption 
that the vertical bonds between the layers are weaker than the in-layer bond for pure bending cases. Ulu 
et al. [10] introduced build orientation optimization algorithm based on the maximum Factor of Safety 
(FOS) approach under single loading conditions using surrogate based method. However, it requires a 
large number of simulations for accurate results which is computationally expensive, especially for 
multiple loading conditions. Thus, there is need of a better algorithm for such cases which can be 
implemented in determining optimal building orientation. 

This work proposes generalized framework for build orientation selection which aims at maximizing 
resistance to the failure under prescribed loading conditions. The problem has been formulated as a 
build orientation optimization problem to achieve the maximum FOS considering the maximum stress 
failure theory. The algorithm uses orthotropic material model characterized by performing physical 
experiments that establishes the compliance matrix. The objective function in this case is solely 
dependent on build orientation angles with other parameters at constant levels. As optimum build 
orientation changes with the loading conditions and orientation angles impact mechanical properties 
significantly, it is difficult to establish analytical relationship between build orientation and 
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corresponding objective function. Such problems cannot be solved using conventional optimization 
methods and can be considered a black box. It can be solved using brute force approach or using 
approximate techniques such as surrogate approximation [10]. The brute force approach utilizes large 
number of FE (Finite Element) simulations to cover the design space which is computationally expensive. 
This work presents a hybrid approach combining two-layer Artificial Neural Network (ANN) model to 
simplify computationally expensive brute force approach and Bayesian Optimization algorithm to 
determine optimal orientation.    

Methodology: 
This work presents generalized machine learning based parameter optimization methodology for 
strength enhancement of 3-D printed components. The proposed methodology is a modified version of 
three step approach presented by Ulu et al. [10]. Fig. 1 shows the methodology proposed in this work 
which can be divided into four steps: Physical Experiments, Virtual simulation, Machine learning and 
Optimization. The subsequent subsection discusses individual elements of proposed optimization 
framework.  

 

 
 

Fig. 1: Machine learning based optimization framework.              
 

Material Characterization (Physical Experiments): 
A set of experiments are conducted to characterize and determine mechanical properties of the 3-D 
printed component in different orientations. The standard tensile test specimen (ASME D638) is 
prepared using FDM based 3-D printer uPrint, Stratasys Inc. along three principle building orientations. 
Fig. 2 shows these three principle building directions for the component designated as X, Y and Z. Three 
specimens were printed for each principal direction to assess precision of the results. These components 
are tested on Universal Testing Machine to extract material properties from the stress-strain curve by 
conducting the tensile test. The Young’s Modulus and Tensile Yield Strength are obtained using 0.2% 
strain-offset method. The corresponding compressive strength is assumed to be double of the tensile 
yield strength [1] and shear strength is assumed to be half of the lowest yield strength according to the 
maximum shear theory [8]. 

 

  
 

Fig. 2: Build Orientations for Physical Experiments. 
 

Virtual Simulation: FE Infrastructure: 
The second step of the proposed methodology is to establish a physics-based model for the virtual 
simulation of 3-D printed components. FE simulations are used frequently for simulating the effect of 
static and dynamic mechanical loading on components. This work employs ANSYS Parametric Design 
Language (APDL) to establish FE infrastructure for virtual simulation. APDL is preferred for parametric 
simulations as it can be controlled using a script generated by another external program e.g. MATLAB or 
Python. FE model is simulated over a design space, generated using brute force sweeping approach. A 
total of 256 objective function evaluations are performed using brute force approach. This number 
represents a uniform grid of 45-degree increments for each of the design variables i.e. building direction. 
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Fig. 3 shows the complete process of obtaining data from FE model represented in the form of a process 
flowchart.   
 
 

 

Fig. 3: Process Flow of Virtual Simulation Module. 
 

As per the maximum stress theory, structural robustness of an object is quantified using FOS criterion. 
The primary objective is to choose the build orientation that maximizes the minimum FOS. This requires 
evaluation of a stress tensor for each element consisting of 6 components: - σx, σy, σz, σxy, σyz, and σxz. An 
approach assigning FOS value to the element necessitates computation of six independent FOS for each 
component and obtaining the minimum value for a given element. The normalized objective function is 
defined as a function of build orientation angles 𝛼, 𝛽, and 𝛾 along principle building directions X-, Y- and 
Z respectively using Eqn. (5.1). 
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(5.1) 

𝑤ℎ𝑒𝑟𝑒 𝑥 = [𝛼, 𝛽, 𝛾] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝛼, 𝛾 = [ −𝜋, 𝜋] 𝑎𝑛𝑑 𝛽 = [0, 𝜋] 

Machine Learning: 
The objective function described using Eqn. (5.1) is based on Stress Tensor obtained from FE analysis 
applied for each orientation on the fixed geometry and boundary conditions. As determination of 
optimum building angles using conventional methods such as brute force approach is computationally 
expensive, it is necessary to reduce the number of function evaluations. This can be effectively attempted 
using machine learning based techniques that regress between data obtained using brute force sweeping 
approach. ANN has been used to find the minimum of objective function and thereby optimum build 
angles. This work proposes use of Levenberg Backpropagation algorithm with Bayesian regularization 
Neural Network for unbiased fit over the dataset. The Backpropagation algorithm is widely employed for 
regression problems in ANN and it is substantially efficient than other algorithms [6]. The input dataset 
to the ANN is the build orientation angles in three directions and the output is the objective function 
defined using Eqn. (5.1).  

Optimization: 
It is not possible to obtain an analytical expression between input and output data using ANN model. 
This paper considers ANN as a black box therefore classical optimization algorithms cannot be applied 
to obtain the optimum value. A map between output and input can be generated or a derivative free 
optimization method can be implemented for the same. The derivative free methods such as trade-off 
exploration and exploitation methods utilize minimum number of function evaluations and are simpler 
to implement in contrast to the map. This study implements Bayesian optimization with exponent 
convergence, without auxiliary optimization and δ-cover sampling for obtaining optimal solution [5]. 
This results into significant reduction of computational time in determining optimal build direction and 
simpler implementation in the practice. Fig. 4 shows overall process map of the proposed methodology 
which uses values as per the need of the step. 

Results and Discussion: 
The proposed algorithm is implemented using computational programs developed using MATLAB, APDL, 
ANN toolbox and Bayesian optimization routine. To examine the efficacy of the proposed algorithm, four 
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different cases were conceptualized with varying level of complexity in the geometry and boundary 
conditions. Fig. 5 summarizes results of build orientation optimization for these cases. It can be seen 
that significant improvement in FOS can be observed when proposed approach is implemented in 
determining build orientation. It can also be observed that the strength of component is changed from 
unsafe (FOS<1) to safer conditions (FOS>1) under given loading and boundary conditions by changing 
build orientation and without modifying geometrical attributes. A physical component corresponding to 
Case 2 is fabricated as per optimal building direction determined from the proposed algorithm. The 
experimental results of tensile strength showed improvement of 126% with optimal building direction 
in comparison to the initial design configuration (Figure 5(c)). 

 

 
Fig. 4: Flowchart of build orientation selection algorithm. 

 

 
    

Fig. 5: (a) Computational Experiments (b) Experimental Results (c) Custom design object on UTM. 
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Conclusions: 
This work presents an integrated approach to determine optimal building direction that enhances 
mechanical strength of 3-D printed components. The first step of the algorithm is to determine 
anisotropic properties of a 3-D printed component by performing strength testing experiments on UTM. 
The material properties derived from experiments are used subsequently in FE simulations and machine 
learning based optimization algorithm to determine optimal building direction. The proposed 
methodology has been implemented in the form of an integrated computational model that determines 
optimal building direction under known loading and boundary conditions. A set of computational and 
experimental studies are conducted for sample components to determine optimal building direction 
using proposed algorithm. It has been observed that the optimal building direction has significant 
impact on load withstanding abilities of 3-D printed components.  
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