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Introduction:

Recently, aesthetic design which takes account of designability has become popular. In the aesthetic
design, the creation of high quality curve and surface models is demanded. However, on current CAD
systems, the operator must move control points by trial and error to obtain high-quality curves and
surfaces. This incurs high costs and requires a great deal of expertise. Therefore, an e�cient method to
generate fair curves and surfaces is desirable to achieve high quality that will satisfy aesthetic requirements
of customers.

Aesthetic curves were proposed by Harada et al. as curve whose logarithmic distribution diagram of
curvature (LDDC) can be approximated by straight line. Miura et al. [2] derived analytical solution of
the curves whose logarithmic curvature graph (LCG)- an analytical version of the LDDC is strictly given
by a straight line and proposed these lines as general equations of aesthetic curves. For a given curve, we
assume the arc length of the curve, the radius of curvature and slope of LCG are denoted by s and ρ and
α, respectively. When α 6= 0, one of the general equations of aesthetic curves is given by the following
equation.

ρα = cs+ d (1)

where, c and d are constraints. We call curves satisfying the above equations as log-aesthetic curves.
Fig.1 illustrates log-aesthetic curves for various α values.
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Fig. 1: Log-aesthetic curves with various α's.
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As a formulation of log-aesthetic surfaces, some surface formulas besides the minimum variation log-
aesthetic surface have been proposed that generate free-form surfaces by sweeping the log-aesthetic curve
[1, 5].Harada et al proposed the log-aesthetic curved surface [1]. It is de�ned as a sweeping surface
using two pro�le curves, which are composed of log-aesthetic curves, and one guide line composed of
a non-log-aesthetic curve. Saito et al. proposed the complete log-aesthetic surface [5]. It is de�ned
as a pure sweeping surface with two log-aesthetic curves. This formulation also uses the log-aesthetic
curve as the guide line and guarantees that all parametric curves are log-aesthetic. Suzuki et al pro-
posed a new formulation of the minimum variation log-aesthetic surface(MVLAS) for scale-invariance
and Parameterization-independence [6]. However, it takes time to generate these curves and surfaces.

In this research, in order to solve the problem, focusing on discrete curves that can be expected for
high speed in generation, we propose discretization of log-aesthetic plane curves based on point sequence
interpolation by discrete clothoid curves, and G1 Hermite interpolating method that generates curves
from end points and the tangential direction there. In addition, we extend the method used in the curves
to the surfaces.

Related work:

In plane case, Schneider et al proposed a algorithm to construct an interpolating closed discrete clothoid
spline (DCS) purely based on its characteristic di�erential equation[4]. In the algorithm, �rstly, initial
polygon are speci�ed and interpolation points are inserted between the polygon so as to interpolate be-
tween initial point sequences so that curvature change becomes monotonous. Furthermore, they extended
the algorithm of planar clothoid splines to closed surfaces of arbitrary topology[4].

Euler-Lagrange equation:

The Euler-Lagrange equation in the variational problem is a partial di�erential equation that characterizes
a functional, In this research, we transform the discrete curve and surface by this Euler-Lagrange equation.
From the variational principle, the log-aesthetic curve satis�es ρα = cs + d, so it is reformulated as a
curve that minimizes the energy between two points in the space with arc length s on the horizontal axis
and σ = ρα on the vertical axis[3]. Then, the functional of the log-aesthetic curve is given by Eq.2[7].

KLAC =

∫
σ2
sds (2)

Therefore, the Euler-Lagrange equation is expressed as Eq.3.

d

ds
(
∂σ2

s

∂σs
) =

d

ds
(2σs) = 2σss = 0 (3)

Moreover

d

ds
(κ−α) = −ακ−(1+α)κs (4)

d2

ds2
(κ−α) =

d

ds
(ακ−(1+α)κs)

= α(1 + α)κ−(2+α)κ2s − ακ−(1+α)κss (5)

Hence we obtain the following expression.

(1 + α)κ−(2+α)κ2s − κ−(1+α)κss = 0

(1 + α)κ2s − κκss = 0 (6)
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When ei = 1, 2(min,max) as a unit principal direction vector and σ = (ρi)αi , σii = dσi

dei
, the functional

KLAS of MVLAS is de�ned as Eq.7 by extending the functional (Eq.2) of the log-aesthetic curve to
surfaces with respect to the principal curvature [6].

KLAS =

∫ 2∑
i=1

(σii)
2dA

=

∫ 2∑
i=1

(αi(κ
i)−(1+αi)κii)

2dA (7)

On the other hand, the unit principal direction vector ei is given by Eq.8 when the eigen vector that
corresponding to ei is (ξi, ηi).

êi =
∂S

∂u
ξi +

∂S

∂v
ηi (8)

From Eq.8, the principal direction di�erential dκi

dei
of the principal curvature becomes as shown in Eq.9,

paying attention to the fact that the principal direction is a unit vector.

dκi

dei
=

1√
E

dκi

du
ξi +

1√
G

dκi

dv
ηi (9)

Moreover, ξ1 = η2 are 1, ξ2 = η1 are 0, when put E = G = 1 and consider curvature line coordinates s, t.
Hence Eq.7 will be following equation.

KLAS =

∫ ∫ 2∑
i=1

1

gii
(αi(κ

i)−(1+αi)κii)
2
√
EG− F 2dsdt

=

∫ ∫ 2∑
i=1

(αi(κ
i)−(1+αi)κii)

2dsdt

=

∫ ∫ 2∑
i=1

(σii)
2dsdt (10)

where, F = 0 because the principal directions are orthogonal to each other. From Eq.10, we obtain the
following Euler-Lagrange equation.

2∑
i=1

σiii = 0 (11)

2∑
i=1

(
(1 + αi)(κ

i
i)

2 − κiκiii
)

= 0 (12)

Schneider et al de�ned Discrete Clothoid Spline as a curve where the discrete curvature satis�es the
following equation[4].

∆κi = κi−1 − 2κi + κi+1 = 0 (13)

κi can be updated by following equation.

κi =
κi−1 + κi+1

2
(14)
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Moreover, Schneider et al extended this theory of the curves to surfaces, considering a one-ring at the
vertex, and updated the inner vertex of the triangular mesh by Eq.15.

κi =
1

6

6∑
l=1

Hi,l (15)

Likewise, the curvature of the discrete log-aesthetic surface is updated the vertex of the Quadrilateral
mesh from the following expression.

2∑
j=1

σji =
1

8

2∑
j=1

8∑
l=1

σji,l (16)

Hence when α1 = α2 = −1
2∑
j=1

σji =
2∑
j=1

ρ−1
j = κ1 + κ2 = 2H (17)

since Eq.16 is twice the average curvature, the result of the optimization agrees with the case of Schneider.

Processing procedure:

The details of curves and surfaces generation procedure are shown below.

1. In curve case, input the start point, the end point, the tangent vector at there, α, and number of
subdivision. In surface case, input the surface that to determine the boundary conditions, α, and
number of subdivision.

2. While keeping the boundary conditions to satisfy G1 continuity, put the initial points.

3. In order to maintain G1 continuity, optimize the position of the target vertex by minimizing the
objective function while �xing two points from the start point and end point respectively. Implement
the optimization until the convergence condition is satis�ed.

4. Repeat processing for the speci�ed number of subdivision, and output the curve (or mesh) when
�nished.

Results:

We show the results of G1 hermite interpolating with log-aesthetic curve and surface in Fig.2, Fig.3
respectively. Fig.2 shows the generated log-aesthetic curve(α = −1.0) and the curvature distribution(α =
−1.0). The number of subdivision is 4 and processing time is 0.35s. It can be seen from the curvature
distribution that the curvature of the curve monotonically changes.Fig.3 shows the generated log-aesthetic
surface, mean curvature distribution, and zebra map.The number of subdivision is 3 and processing time
is 40s.

Conclusions:

In this research, we propose a G1 Hermite interpolation method based on a discrete log-aesthetic curve
aiming at speeding up curve generation based on point sequence interpolation based on discrete clothoid
curve, and generated log-aesthetic plane curves. Also, by extending the method used on the curve to a
surface, we propose a G1 Hermite interpolation method based on a log-aesthetic surface, and generated
log-aesthetic surfaces. In the future, we aim to speed up the algorithm and aim to implement it as a
CAD plug-in.
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Fig. 2: G1 Hermite interpolating with discrete log-aesthetic curve Left:generated curves Right:curvature
distribution(α = −1.0).

Fig. 3: G1 Hermite interpolating with discrete log-aesthetic surface Left:input Middle:output(mean cur-
vature distribution) Right:zebra map.
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