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Introduction: 
Bernstein polynomials [4, 6] provide a series of attractive properties and elegant algorithms, e.g. de-
Casteljau algorithm for various computational applications besides its widespread use in fields of 
CAGD and computer graphics. Nevertheless, they have received virtually no attention in finite element 
approximation for many decades since that the interpolated nodes might be expected in finite element 
method instead of the control points away from physical elements [1, 7]. In the traditional finite 
element method, CAD geometries should be approximately divided into mesh elements for analysis, 
which can consume up to 80% time of the whole process [8]. The gap between CAD and FEA will be 
bridged with the advent of isogeometric analysis (IGA) [3, 8] which directly employs the spline basis 
functions and control points of CAD geometries as the shape functions and nodes in FEA. This makes 
it possible to introduce Bernstein polynomials to FEA to better enjoy the elegant properties and 
algorithms of the Bernstein polynomials.  

Motivated by the scenario of isogeometric analysis and some elegant properties and algorithms of 
Bernstein polynomials, this paper, from a geometric view, investigated the application of mixed 
Bernstein basis functions based higher-order finite element method to the analysis and simulation of 
plate and shell structures represented by unstructured triangular and quadrilateral mesh. Triangular 
Bernstein-Bézier patches and tensor-product Bézier patches are constructed in a simple and intuitive 
way over triangular and quadrilateral elements, respectively. The h- and p-refinements can be easily 
implemented on the constructed mixed Bernstein-Bézier patches. Reissner-Mindlin theory is employed 
to deduce the governing equations and stiffness matrices of plates and shells. Several numerical 
examples including classical benchmark problems and engineering applications are studied to validate 
the accuracy, robustness, and convergence of the presented Bernstein-Bézier finite element method. 

Bézier Patches Construction: 
Triangular and quadrilateral elements are the frequently-used and important elements for the analysis 
of surface geometries in the finite element method. Tensor-product Bézier surfaces over quadrilateral 
elements and triangular Bézier surfaces over triangular elements are firstly built by following two 
steps. The first step is to construct edge Bézier control points on each edge in the mesh model and the 
next is to build inner control points for each element according to the obtained boundary Bézier 
control points. In this section, bi-cubic tensor-product Bézier patches and cubic triangular Bézier 
patches are built over mesh elements.  
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Edge Control Points Construction: 
For 2D plane mesh models, edges are divided into two parts: boundary edges and inner edges. We 
construct the Bézier control points for mesh boundary edges with a fairing strategy and for inner 
edges with a shape-preserving strategy. Tangent vectors of the boundary vertices are defined firstly. 

Assuming that 
1 2 3, ,v v v are three successive boundary vertices as depicted in Fig. 1(a), tangent vector 

2t  

of the vertex 
2v  are defined by the circumcircle of vertices 

1 2 3, ,v v v  with 
2 2Ov t 0  where point O is 

the center of the circumcircle. Tangent vector attached to each boundary vertex can be defined after 
iterating through all boundary vertices. 
 

 
  

(a)  (b) (c)  
Fig. 1: Bézier Edge control points construction. (a)-(b) The tangent vector calculation and control points 
construction for plane mesh boundary edges, (c) Bézier control points construction for 3D surface 
Mesh edges. 

 
With a tangent vector of each boundary vertex, we can choose suitable points as Bézier control 

points for each boundary edge. As shown in Fig. 1(b), e12 is a boundary edge and 
1 2,t t  are two tangent 

vectors for vertices 1v  and 2v , where eij denote the edge built with the vertices 
iv and jv . 

1 2,b b  are two 

trisection points of the edge e12 with 1 1 2 2 1 22 3 1 3 , 1 3 2 3b v v b v v . Bézier control points 1b  and 

2b  are defined by the projection of two vertices 
1 2,b b onto the tangent vectors

1 2,t t . In formulae for 

implementation, control points 
1 2,b b  are given by: 

 1 1 2 1 1 1 2 2 1 2 2 2

1 1
( ) , ( ) .
3 3

b v v v t t b v v v t t  (2.1) 

The points 
1 1 2 2, , ,v b b v  are chosen as control points for each boundary edge and 

1 1 2 2, , ,v b b v  for each 

inner edge. For 3D surface mesh models, vertices and its normals are employed to construct edges 
control points as proposed in [10]. As demonstrated in Fig. 1(c), e12 is an arbitrary edge and 

1 2,n n denote the normals for the vertices 1 2,v v . Control points 
1 2,b b  are defined by the projection of 

trisection points 
1 2,b b  of the edge e12 onto the corresponding normal plane and can be formalized as:  

 1 1 2 2 1 1 1 2 1 2 1 2 2 2

1 1
2 ( ) , 2 ( ) .

3 3
b v v v v n n b v v v v n n  (2.2) 

The Bézier control points for each mesh edge are obtained after the implementation of Eqns. (2.1)-(2.2). 
For arbitrary triangular or quadrilateral elements, we can find their all edge Bézier control points which 
are regarded as the boundary control points of triangular Bézier patch or tensor-product Bézier patch. 
Next the inner control points of different Bézier patches could be constructed based on the known 
boundary control points. 
 
Triangular Bézier Inner Control Points Construction: 
While three boundary control polygons of a triangular Bézier patch are given, the inner control points 
can be constructed by utilizing a mask given in [5]. This kind of triangular Bézier patches is also called 
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triangular permanence patches [5]. The inner control point b111 of a cubic triangular Bézier patch could 
be defined by: 

 
111 300 030 003 210 120 021 012 102 201( ) ( ).b b b b b b b b b b  (2.3) 

A quadratic precision property could be obtained by choosing 1 6  [5]. Then the above equation is 

rewritten as: 

 111 300 030 003 210 120 021 012 102 201

1 1
( ) 2, ( ), ( ),

3 6
E E V V Eb b b b b b b b b b  (2.4) 

which is equal to that from [10]. Therefore, the cubic triangular Bézier patch built with 1 6  is a 

curved PN triangle. 1 6  is also used in this paper. 

 

Tensor-product Bézier Inner Control Points Construction: 
Tensor-product Bézier patches are established over quadrilateral elements. Given boundary control 
points of a tensor-product Bézier patch, the inner control points could be generated by introducing a 
discrete Coons method presented in [5], which was also employed as the first step to build good 
parametrization of a computational domain for isogeometric analysis [11]. 

        Given four boundary control points 0 0, , , , 0,1, , 0,1, , ,j nj i im i n j mb b b b the interior control points 

,0 ,0ij i n j mb  are defined by the discrete Coons method as: 

 00 0
0 0

0

1
1 1 1 m

ij j nj i im
n nm

j mi i j j i i
j mn n m m n n

b b
b b b b b

b b
 (2.5) 

There also exists a mask to construct permanence patches [5]. The discrete Coons method is used to 
generate inner control points of a tensor-product Bézier patch in this work. Figures 2(a) and 2(d) 
illustrate a rotated letter ’g’ plane mesh model and a car body 3D surface mesh model, both of which 
are constituted with few triangular elements and a bunch of quadrilateral elements. The mixed Bézier 
models are constructed from the unstructured meshes as shown in Figs. 2(b) and 2(e). Figures 2(c) and 
2(f) present the distributions of the constructed Bernstein-Bézier mesh. Yellow and cyan elements 
represent triangular and rectangular Bézier elements. Red and blue solid dots (spheres) represent 
boundary control points and inner control points, respectively. It’s easy to observe the mixed Bézier 
models are much smooth and real compared with the corresponding mesh models. 
 

   
(a) Plane mesh model (b) Plane Bézier model (c) Plane Bézier control net 

   
(d) Surface mesh model (e) Surface Bézier model (d) Surface Bézier control net 

Fig. 2: Mixed Bézier reconstruction from a rotated letter ’g’ plane model and car body surface model 
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Formulations: 
Considering the static bending and free vibration of the Reissner-Mindlin plate, the variational form of 
the equilibrium equation in the context of elastodynamics can be written as: 

 T T T T
p pd d d du u u b u t  (3.1) 

where ,b t  and  denote the body force, traction force and density. The discretized governing equations 

derived for static bending problems are given as 

 .Ku F  (3.2) 
And for free vibration problems are given as 
 .Mu Ku 0  (3.3) 

where 

 , .T Td dK B DB M R mR  (3.4) 

To calculate the integration over elements, Gauss-Legendre quadrature rule is used for tensor-product 
Bézier patches and a collapsed Gaussian quadrature rule is used for triangular Bézier patches by 
collapsing the square to a triangle [9]. 

Numerical Examples: 
Clamped Square Plate Under a Transverse Load: 
In the plate bending problem, a unit square plate [0, 1]2 with all sides fully clamped is investigated as 

shown in Fig. 3.  Young’s modulus E = 10.92 × 106, Poisson ratio v = 0.3. The thickness-span ratio of 

the plate is 0.1. The square plate is built with 30 bi-cubic rectangular Bézier elements and 4 cubic 

triangular Bézier elements. The deflection w, bending moment Mx and rotation x are investigated and 
plotted as shown in Fig. 3(b)-3(d).  
 

    

(a) Bézier mesh (b) Deflection w (c) Bending moment Mx (d) Rotation x 
Fig. 3: Clamped unit square plate. (a) The constructed mixed Bézier mesh model and simulations 

results of (b) deflection w (c) bending moment Mx and (d) rotation x.   
 
Pinched Cylinder Subjected to a Concentrated Load: 

Pinched cylinder from the so-called shell obstacle course [2] with rigid diaphragm ( 0)x z yu u  is 

subjected to a pair of radial load P at the top and bottom middle position as shown in Fig. 4(a). Due to 
the symmetry property, only one eighth of the cylinder should be modeled and analyzed. Figure 4(b) 
shows the mixed Bézier mesh consisting of 9 triangular Bézier patches and 150 rectangular Bézier 
patches. The vertical displacement of the shell is presented in Fig. 4(c).  The convergence of the vertical 

displacement at point C, against #elem  and #dof , is investigated among the mixed Bézier meshes, 

C2-continuity and C0-continuity NURBS mesh with different degrees as depicted in Fig. 5.  
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(a) Problem definition (b) Mixed Bézier mesh (c) Deflection 

Fig. 4: Pinched cylinder. (a) The description and dimensions of the pinched cylinder, (b) the mixed 
Bézier mesh of one eighth of the pinched cylinder and (c) the vertical displacement. 
 

                
Fig. 5: Pinched cylinder: the convergence comparison of the vertical displacement at point C against the 
square root of the number of elements (Left) and the square root of the number of DOFs (Right). 

Conclusions: 
A novel method has been proposed to realize higher-order finite element analysis on unstructured 
mesh surface by the construction of triangular Bézier patches over triangular elements and tensor-
product Bézier patches over quadrilateral elements. The procedures of construction are simple and 
intuitive. The numerical results show that this method is feasible for its near equivalent accuracy and 
convergence with isogeometric analysis so it provides an alternative for engineering scenarios when 
higher-order finite elements are required. Also for incomplete mesh models that are often too coarse 
to give a fair result but need to be further refined, this method can be especially helpful and give more 
accuracy compared with the resort to the classical finite element method.  
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