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Introduction: 
Autonomous vehicles are self-driving cars with the capability of sensing their environment and making 
control decisions without human inputs. The sensors of such vehicles may include radar, cameras, 
sonar, GPS, odometry and inertial measurement units. The potential benefits of autonomous vehicles 
are reduction of traffic accidents [11],[14], increase in fuel efficiency [5], improvement in travel 
comfort [2], and enhanced mobility for seniors and disabled people [6].  

Because of the early stages of the autonomous driving technology, testing such vehicles is a 
crucial task to secure their safety before those cars are extensively used by the public. Field test is a 
predominant way to validate and verify the safety of autonomous vehicles. But, the field test is limited 
by the difficulty in constructing or reproducing problematic traffic situations that cause real traffic 
accidents. Each field accident occurs only after thousands of thousand miles of driving. This renders 
an inefficient testing methodology. A virtual testing allows scientists and engineers to assess new 
control strategies and data fusion schemes of autonomous vehicles under various virtual road 
conditions and traffic patterns. This provides a complementary way of testing that potentially saves 
money and manpower in the entire development cycle of autonomous vehicles.  

Virtual testing of autonomous vehicles is possibly related to the modeling of vehicles with various 
sensors [1],[4],[13],[15], perception [12], neighboring traffic [8-9], road [16], weather [18], path planning 
[3], and control modules [7],[10],[17],[19]. There are several commercial software tools available in the 
market for general-purpose vehicle simulations. CarMaker is a product from IPG Automotive 
(https://ipg-automotive.com/products-services/simulation-software/carmaker-release-70). It is 
designed for testing passenger cars, light-duty vehicles, trucks and two-wheelers with an entire 
environment defined by real test scenarios. CarSim is another popular product from Mechanical 
Simulation (https://www.carsim.com). It aims at the simulation of advanced driving assistance system 
(ADAS) technologies. VIRES Virtual Test Drive is a product from VIRES Simulationtechnologie GmbH 
(https://vires.com) with an aim on open simulation standards and a focus on contents (road and 
scenario editors) and customization.  

Very few, if any, past studies were focused on a virtual testing system of autonomous vehicles 
with respect to machine learning and computer gaming. The main objective of the study in this paper 
is to design and implement a computer gaming software system for testing the machine learning of 
autonomous vehicles. 

http://www.cad-conference.net/
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Object-Oriented Design of a Virtual Testing System for Autonomous Vehicles: 
Six main classes are designed, as shown by a UML class diagram in Fig. 1. The primary functionalities 
of these six classes are  

(1) TrackManager – It spawns a set of CarControllers and puts them the inside of a class RaceCar; 
it checks every 0.02 seconds that every car is in the correct position, that cars are still racing, 
and what type of game mode is currently occurring; it also initiates evolution once generation 
is over. 

(2) Checkpoint - Each Track Piece has a checkpoint, and it measures how far the specific RaceCar 
has gone versus how much distance the car must go. 

(3)  RaceCar - Private class of TrackManager. This class gives CarController more information that 
is only needed for the TrackManager. 

(4) CarController – It holds the brain and handles the physical movement for a car. 

(5) Brain - The neural network for each car. This class determines weights on each input and 
output. 

(6) CarMovement – By using two inputs, it handles how the car moves. 

A data dictionary is stored in a separate file in order to make it easier to update as well as reference.  

 
Fig. 1: A UML class diagram of our virtual testing system. 

http://www.cad-conference.net/
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Software Interface and Behavior: 

Our system uses a Unity interface and associated libraries heavily, to the point that the majority of our 
classes inherit from the mono-behavior class defined in Unity’s libraries. The system is interacted with 
a user interface coded within Unity. This interface is the only way to interact directly with the system.  

Fig. 2 is a focused view on one car and an overhead view of a full track view. Track Manager is 
begun each and every time a game mode is selected, initiates the subcomponents Track Spawner and 
Car Spawner, and then tracks the progress of all spawned cars across the track. Once all the cars have 
either crashed or completed the track, track manager initiates a restart of the track, interfacing with 
Brain in order to have all other cars “learn” from the best two cars and increments the generation 
counter. Finally, Track Manager continues until the player hits a quit condition that track manager 
monitors (primarily, pausing and quitting). 

Track Spawner attempts to load in the map found at location MapName; if it does not exist, it 
returns an error and spawns a default map. It should return a set of sorted CheckPoint objects. 
Track Spawner attempts to save the current map to location MapName. If it cannot be saved to 
MapName, Track Spawner should throw a permission error. If Track Spawner is unable to save the 
map due to some error with the map, an invalid map error should be thrown. If successful, SaveTrack 
should return true.  

 

 
 

 
Fig. 2: An example of focused camera on one car and an overhead view. 

 

Car Controller and Machine Learning: 

Car Controller is responsible for creating a shell of a vehicle that is used by all generated, simulated 
vehicles as well as the user’s vehicle, if the race mode has been selected. This shell includes values for 
the vehicle’s motor force, braking force and four-wheel colliders as well as a Brain object. The two 
back wheels apply the motor torque and the two front wheels are capable of steering left and right. 
Car Controller also handles vehicles that have collided with a wall. It causes these vehicles to be 
disabled until the next generation. Its subcomponents are AIMovement and PlayerMovement which 
control the AI and player vehicle movement, respectively. The player vehicle movement is handled by 
user inputs while the AI vehicle movements are handled by five sensors attached to the front of the 
vehicles and the Brain object. 
       There are three main processing modes for Brain. The first is initialization, where the class either 
inherits weights from another brain or the weights are randomized if one is not provided. The second 
mode is mutation, where upon calling the function mutate the instance’s weights are randomly 
mutated at a rate defined in the preferences. The third and final mode of operation is the feed forward 

http://www.cad-conference.net/
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mode, where the given inputs are fired into the neural network. Next, the nodes use each connection’s 
weight, and then the next node decides to fire or not to fire based on the sum of fired values, until the 
output layer is reached. From there, the function returns the values of the output nodes. Fig. 8 is an 
example of a neural network used in this study.  

Validation Test: 

There are three categories of tests in this study. The first one is vehicle-related tests: 

1. Vehicle sensors should detect walls within range. 

2. Vehicles should be able to speed up, slow down, turn right and turn left. 

3. Vehicles should stop moving immediately after colliding with a wall. 

4. Vehicles should not be able to collide with each other. 

 

Another category is neural network-related tests: 

1. The neural network should fire according to which sensors are activated. 

2. The neural networks of the two top performing cars should be used 

    as a base for the next generation. 

 

The third category is track-related tests: 

1. Track should spawn vehicles at the beginning of each simulation. 

2. Track should track distance traveled of each vehicle. 

3. Track should track time taken to complete a lap for each vehicle. 
In total, there were 40 tests that were performed by the first three authors of this paper. All the tests 
were passed via a black box test or a unit test or a white-box performance test. Due to page limitation, 
the detailed test results are not given here.  

Conclusions: 
Neural Burnout is a fully customizable interactable driving test system in 3D space that applies an 
evolutionary neural network to a series of cars and has them run simulated races against each other 
until eventually, almost every car can finish the race without crashing. Users are allowed to change 
how many cars each generation should have and how fast the cars can travel. Forty different tests 
were performed with a satisfactory result. Fig. 9 shows two screenshots of the main GUIs. The system 
thereby provides a virtual facility for testing autonomous vehicles.  
As future work, we will add the following features: (1) testing different learning algorithms, (2) 
automatic generation of test track based on Google map, and (3) testing different control and path 
planning algorithms.  
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