
106

Proceedings of CAD’19, Singapore, June 24-26, 2019, 106-110
© 2019 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Data Clustering and Slice Generation of Point Cloud Data for Direct 3D Printing System

Authors:
Tianyun Yuan, tyuan@student.pvamu,edu, Prairie View A&M University
Xiaobo Peng, xipeng@pvamu.edu, Prairie View A&M University
Dongdong Zhang, peterzdd_2002@hotmail.com
Lin Li, lilin@pvamu.edu, Prairie View A&M University

Keywords:
Rapid Prototyping, 3D Printing, Direct Manufacturing, Point Cloud Data

DOI: 10.14733/cadconfP.2019.106-110

Introduction:
There is a demanding need for rapid replication or reproduction of physical objects. In many industries
such as turbine manufacturing, aerospace, biomedicine, culture heritage etc., the CAD files of parts of
interest are usually unavailable or inaccessible. In some situations, such as automotive styling, the
designed parts are created by the designer using clay, wood, or foam rubber. The conventional method
of reproducing parts includes two main processes, i.e., Reverse Engineering (RE) and manufacturing. The
conventional procedure of reproducing a part includes several steps, as shown in Fig. 1. First, the cloud
point data is collected from the surface of an existing part by 3D scanning. Next, the CAD model of the
object is reconstructed using professional software. Afterward, the CAD model is converted into a facet
model. The facet model is then sliced into layers by the slicing software. A G-code file is generated and
imported to the 3D printer for final manufacturing. The whole process is far from being automatic. The
steps result in rather expensive remodeling computations, large file transmissions, and highly
accumulated approximation errors [2]. Laborious work and professional knowledge are required for all
steps. Users have to be familiar with various modeling software, which usually requires years of training
for them to be efficient and productive.

Fig. 1: The comparison between traditional prototyping and proposed direct prototyping methods.

In our previous research, an experimental direct rapid prototyping system was developed, which

automatically prints the object from point cloud data using Moving Least Square (MLS) method [3]. This
paper presents the development of a direct 3D printing system to automate the process to rebuild or
duplicate a physical object. The physical object can be manufactured or duplicated from cloud point
data by avoiding the CAD model or STL file reconstruction. A data clustering algorithm is developed to

http://www.cad-conference.net/
mailto:peterzdd_2002@hotmail.com

107

Proceedings of CAD’19, Singapore, June 24-26, 2019, 106-110
© 2019 CAD Solutions, LLC, http://www.cad-conference.net

handle the 3D datasets and solve the issues of multiple contours or each slicing plane. The developed
system integrates the processes of model reconstruction from point could data, model slicing, printing
path generation, and 3D printing. Laborious work and processing time can be saved using the system.

Methods:
The workflow of our direct 3D printing system is shown in Fig. 2. The processes involving user’s
interventions are shown in orange, whereas the computational processes shown in green are executed
automatically. The users are only involved in the first and last step, i.e., inputting the cloud point data
and starting the printing process. In the algorithm, the calculation loop scans through the input data
along the printing orientation layer by layer. A bounding box with a preset height is applied to each layer.
Points in the bounding box are divided into groups by the Improved Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) method to solve the multiple contours problem. Afterwards, MLS

method is applied to generate the contour for each group. The proposed system also has the ability to
print solid parts by filling the contours. The parallel filling pattern method was developed and
implemented in the system.

Fig. 2: The workflow of the direct 3D printing system.

Point Cloud Grouping
The improved DBSCAN method was developed for group division of the input cloud data. If the input
cloud points (including x, y, z position and i, j, k, normal information) are not grouped properly, then
incomplete or broken contours might occur. Such a problem occurs when the slicing plane is close to
the saddle points, where the geometry starts to divide into several branches, or the critical points, where
the surface reaches the local extrema. The gradient of these points was zero. To solve this problem and
to avoid the interference from the mass data, the points in the bounding box were divided into groups
before generating the contours.

The classic DBSCAN method [1] defines three types of points, i.e., core point, border point, and

outliner point. As presented in Tab. 1. 𝐸𝑝𝑠 is defined as the maximum radius of the neighborhood. The

neighbor points of 𝑝 are the points 𝑞𝑖 in the bounding box and meet the requirement 𝑃 = {𝑞|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤
𝐸𝑝𝑠}. 𝑁𝐸𝑝𝑠(𝑝) is the number of neighbor points of the checking point 𝑝. 𝑀𝑖𝑛𝑃𝑡𝑠 is the minimum number

of points in a neighborhood of the checking point 𝑝. A core point is a point with high density, whose

neighbor point number is greater than or equal to 𝑀𝑖𝑛𝑃𝑡𝑠. A border point is a point whose neighbor

point number is less than 𝑀𝑖𝑛𝑃𝑡𝑠 but is directly density-reachable from a core point. A point 𝑞 is

directly density-reachable from a point 𝑝 with regard to the 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 if 𝑞 belongs to 𝑁𝐸𝑝𝑠(𝑝) and

point 𝑝 is a core point. A point 𝑞 is density-reachable from a point 𝑝 if there is a chain of points 𝑞1, 𝑞2,
…, 𝑞𝑛, 𝑞1 = 𝑝, 𝑞𝑛 = 𝑞, such that 𝑞𝑖+1 is directly density-reachable from 𝑞𝑖. A core point is able to form
a new cluster and add all the neighbor points to the cluster and then recursively add their neighbors if
they are core points. A border point itself is included in the cluster; however, it cannot start a new
cluster, and its neighbor points cannot be directly added to the current cluster. A point is defined as an
outliner point if it is neither a core point nor a border point. An outliner point can neither start a new
cluster nor be included into any cluster.

http://www.cad-conference.net/

108

Proceedings of CAD’19, Singapore, June 24-26, 2019, 106-110
© 2019 CAD Solutions, LLC, http://www.cad-conference.net

 Point type Point condition Start a group Join the group

1 Core point 1) 𝑁𝐸𝑝𝑠(𝑝) ≥ MinPts

2) 𝑍𝐸𝑝𝑠(𝑝) ∩ Bandz_now ≠ ∅
√ √

2 Border point 1) 1 < NEps(p) < MinPts

2) Density reachable from a core point
× √

3 Outlier point 1) The rest of the points × ×

4 Quasi-critical
point

1) NEps(p) ≥ MinPts

2) ZEps(p) ∩ Bandz_now = ∅
× ×

Tab. 1: Point types in the improved DBSCAN method.

In the improved DBSCAN algorithm, a new type of point, quasi-critical points, is introduced as a branch

of core points. In Fig. 3., the slicing plane noted as 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 is considered as band with a tolerance

width, where: 𝑍𝑛𝑜𝑤 − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ≤ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 ≤ 𝑍𝑛𝑜𝑤 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.

Fig. 3: Examples of the core point and the quasi-critical point.

The z value range of the neighborhood, which is shown as orange area, is noted as 𝑍𝐸𝑝𝑠(𝑝). A quasi-

critical point has enough neighbor points (greater than or equal to 𝑀𝑖𝑛𝑃𝑡𝑠), and the slicing plane

𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 does not cross the z value range of its neighbors (𝑍𝐸𝑝𝑠(𝑝) ∩ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 = ∅), as shown in the

case D in Fig. 3. Correspondingly, a core point is a point with high density, and the z value range of its

neighbor crosses the slicing plane (𝑍𝐸𝑝𝑠(𝑝) ∩ 𝐵𝑎𝑛𝑑𝑧_𝑛𝑜𝑤 ≠ ∅), as shown in the case A in Fig. 3. The quasi-

critical points can neither form a group nor be included in a group. For example, case A in Fig. 3, the

neighborhood of a core point 𝑝𝑖 crosses the slicing plan z_now. Case D in Fig. 3, all the points found in

the neighborhood were below the band of slicing plane; thus, the point 𝑝𝑖 is classified as a quasi-critical
point. Therefore, the points in the bounding box could be separated into two groups.

Contour Generation Using MLS
The Moving Least Square (MLS) method is briefly described here and illustrated in Fig. 4. The details can
be found in the previous work [3]. The input data is a set of points, which include the information of

their position and normal. 𝑥 is the starting point. A set of neighbor points 𝑝𝑖 is selected by calculating

the distance between 𝑥 and 𝑝𝑖 . A vector 𝑣𝑖⃗⃗⃗ is assigned as 𝑣𝑖
→ = (𝑝𝑖 − 𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . The Gaussian weighting function

is defined as:

𝑤(𝑥, 𝑝𝑖) = 𝑒
−||𝑣𝑖
→ ||2/ℎ2 (1)

in which ℎ2 is a scale factor that determines the width of the Gaussian kernel. Here it is taken as a

fraction of the local feature size, ℎ
2 = ‖𝑣𝑖‖max

2 . The moving direction 𝑛(𝑥)
→

 is obtained by Eqn. (2). In Eqn.

(2), 𝑛𝑝𝑖⃗⃗ ⃗⃗ ⃗ is the normal at point 𝑝𝑖 . The point on the MLS surface will be found in the moving direction.

𝑛(𝑥)
→

=
∑ 𝑤(𝑥,𝑝𝑖)×𝑛𝑝𝑖

→
𝑝𝑖∈𝑃

‖∑ 𝑤(𝑥,𝑝𝑖)×𝑛𝑝𝑖
→

𝑝𝑖∈𝑃
‖
 (2)

http://www.cad-conference.net/

109

Proceedings of CAD’19, Singapore, June 24-26, 2019, 106-110
© 2019 CAD Solutions, LLC, http://www.cad-conference.net

An estimated point y, can be found along the moving direction 𝑛(𝑥)
→

. 𝑡 is the moving distance

between guess point 𝑥 and the estimated point y along 𝑛(𝑥)
→

. The energy function Eqn. (3) is defined as
a function of t:

𝑒(𝑡) = ∑ (((𝑥 + 𝑡 ∙ 𝑛(𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)) − 𝑝)) ∙ 𝑛(𝑥))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗2 ∙ 𝑤(𝑦, 𝑝𝑖)𝑝𝑖∈𝑃
 (3)

The surface point is the estimated point, whose 𝑒(𝑡) reaches to the smallest energy. It means the final

moving distance is determined by finding the minimum local energy along the moving direction 𝑛(𝑥)
→

.

Then the guess point 𝑥 is projected to the surface point. The next guess point is calculated by adding a
step size in the direction tangent to the normal of the previous surface point until a closed contour is
formed. All the surface points found on the slicing plane will be connected as a closed contour.

Fig. 4: MLS surface representation and the closed contour generation.

Results and Discussion:
The algorithm was implemented using MATLAB. The results of group division, contour generation, and
printed examples are discussed in this section.

Table 2 shows the results of group division of the two sample geometries. The points in x and z
coordinates are the input data, i.e., the points in the bounding box. The x and y coordinates on the right
shows the result of group division. The points in different groups are shown in different colors, and the
quasi-critical points are presented as black dots. A closed contour is generated for each group shown in
x and y coordinates on the right.

A:

B:

Tab. 2: Group division for two samples.

http://www.cad-conference.net/

110

Proceedings of CAD’19, Singapore, June 24-26, 2019, 106-110
© 2019 CAD Solutions, LLC, http://www.cad-conference.net

In Tab.2, the slicing planes of sample A and sample B are close to the saddle point. These inputs are
considered as one group by the classic DBSCAN method because the points in the middle area connect
the left and right parts in three-dimension space. However, the improved DBSCAN method is able to
recognize the quasi-critical points and divide the inputs into multiple groups. Thus, the MLS contours
for each group are generated as desired.

Two models were tested with the direct 3D printing system, as shown in Tab. 3. The printer used in
the research work was controlled with open source software named Pronterface (www.pronterface.com).
The main material used was PLA. The multiple branch problem was solved by generating multiple
contours of the layer. As shown in sample (A), the two branches at the bottom and the top of the model
were successfully divided. In sample (B), the two ears of the bunny are separated.

 Point cloud model Sliced model Solid-printed

A

B

Tab. 3: Examples of 3D printed objects.

Conclusions:
This paper presents a 3D printing system that directly manufactures or rebuilds an existing object.
Neither STL nor a CAD model was recreated in this process. To solve the multiple contours problem on
one slicing layer, we developed an improved DBSCAN algorithm to divide the points in the bounding
box into groups. The geometries were successfully manufactured with the developed system. The
sample point cloud data used in this paper were obtained from online public resources or generated
from CAD software. Future work will test the system using the data directly scanned from real objects.

References:
[1] Ester, M.; Kriegel, H. P.; Sander, J.; Xu, X.: A density-based algorithm for discovering clusters in large

spatial databases with noise, Proceedings of 2nd International Conference on Knowledge Discovery
and Data Mining, 96(34), 1996, 226-231, Portland, Oregon.

[2] Liu, G.; Wong, Y. S.; Zhang, Y.; Loh, H. T.: Error-based segmentation of cloud data for direct rapid
prototyping, Computer-Aided Design, 35(7), 2003, 633-645. https://doi.org/10.1016/S0010-
4485(02)00087-8.

[3] Yuan, T.; Peng, X.; Zhang, D.: Direct rapid prototyping from Point Cloud Data without surface
reconstruction, Computer–Aided Design and Applications, 15(3), 2018, 390-398.
https://doi.org/10.1080/16864360.2017.1397889.

http://www.cad-conference.net/
https://doi.org/10.1016/S0010-4485(02)00087-8
https://doi.org/10.1016/S0010-4485(02)00087-8
https://doi.org/10.1080/16864360.2017.1397889

