
71

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 71-75
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Special Cases in Object Slicing for 3-D Printing

Authors:
William Oropallo, woropall@mail.usf.edu, University of South Florida
Les A. Piegl, lespiegl@mail.usf.edu, University of South Florida
Paul Rosen, prosen@usf.edu, University of South Florida
Khairan Rajab, khairanr@gmail.com, Najran University

Keywords:
3-D printing, NURBS, Point cloud, Object slicing, Anomalies

DOI: 10.14733/cadconfP.2018.71-75

Introduction:

In this paper we investigate how a general-purpose point-based slicer can be made more robust by
extending its reach to handle two types of anomalies, commonly occurring in object slicing: (1) touch
cases, and (2) overlaps. Within the touch case category, we handle point, line, curve as well as planar
touch cases, Figure 1. As the slicer moves up from the tray, it encounters these cases and it needs to
know how to handle them. The top right of Figure 1 shows an important case. The slicer not only
needs to find the circle of touch, it needs to know that this is a touch and the interior of the circle is
not to be filled with material. Similarly, the bottom left needs to be identified as well so that the slicer
does not look for a closed boundary. The bottom right needs special attention in that the intersection
is not only a set of boundary curves but an entire planar domain. The method described herein is
based on our point-based slicer algorithm [1,2] performed on NURBS objects [3].

Fig. 1: Point, curve, line and planar touch cases.

http://www.cad-conference.net/

72

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 71-75
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

Overview of point-based slicing algorithm:
The point-based slicing algorithm has the following main components [1, 2], Figure 2. First the NURBS-
based model is decomposed into its smaller components, called the Bezier patches.

Then the Bezier patches are further decomposed into smaller surfaces based on the required
tolerance and the layer thickness. These tiny surfaces are subsequently binned into a data structure
for fast searching as the slicing plane moves up. That is, for each position of the slicing place, there is
a list of surfaces that intersect that plane.

For each slicing plane points are sampled from the surfaces that are in the local data structure.
The sampling is done so that for each point there is a local ring neighborhood where the points are
within the required tolerance. The obtained point cloud is ready for slicing.

The slicing begins by laying a grid (of size equals the tolerance) on the plane, and placing voxels
(of size equals the tolerance) above and below it. The sampling points are then processed into these
voxels and the cells are colored as follows. If there are points in the voxels above and below the cell, it
is colored black. If there are points only above, it is marked red, and if there are points only below, it
is marked blue. The black cells are intersection cells, whereas the red and blue ones need to be
processed. Figure 2 top left and middle show the red, blue and black cells for three intersection loops.
Note how well the intersection curve is delineated by the border between the red and blue cells.

Fig. 2: The point-based intersection process.

To fill the gap in the sequence of black cells, the red and blue cells that are involved in the transition
in color change are marked black, producing a maximum of two cells wide coverage of the intersection
curve, Figure 2 top right.

Using a 3x3 mask the thick intersection curve loops are separated into individual closed curves,
Figure 2 bottom left. Some of these curves can degenerate into a line or a point, which requires special
attention when filling the region with material.

To thin down the thick array of points that represent the intersection curve, we use a flood fill
algorithm. This algorithm, as its name suggests, floods the domain and hits the outermost cells which
are then selected to be the intersection points, Figure 2 bottom middle. To store the intersection
points for later reuse, and to be able to vary the sampling density, we fit a B-spline curve to the final

http://www.cad-conference.net/

73

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 71-75
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

black points, Figure 2 bottom right. The B-spline curve provides a smooth representation of the
intersection curve that can be discretized later on at any level of detail.

In the next section we provide details on how this algorithm can be generalized to handle special
cases such as touch cases as well as overlaps.

General algorithm with anomaly detection:
The algorithm proceeds exactly as described in the previous section up until cell coloring begins. To
account for the variety of touch cases, a bit more bookkeeping is necessary with quite a few more flags
applied. Because of the large number of flags used, we dropped the coloring scheme and replaced it
with named cells. The classification is as follows:

• EMPTY: a cell with empty voxels on it.

• WEAK BELOW: a cell with only a non-empty voxel below the plane (formerly blue).

• WEAK ABOVE: a cell with only a non-empty voxel above the plane (formerly red).

• STRONG: a cell with voxels that have points below and above the plane (formerly black).

• BOUNDARY: cells containing intersection points.

• INTERIOR BOUNDARY: these are intersection contours for the planar touching case that are
inside the primary boundary

• PLANAR: used for cells in the planar touching case for the area to be filled

• REPAIRED EXTERIOR: BOUNDARY cells that have been eliminated because they are
unnecessary for the boundary creation.

• EXTERIOR: cells that are not BOUNDARY, PLANAR, INTERIOR BOUNDARY or REPAIRED
EXTERIOR.

Using these classifications for the various cells, the overview of the algorithm is explained below.
Please note that handling special cases requires a lot of code and most of it is not very pretty. So, the
algorithm below may not admit immediate comprehension. However, the examples that follow attempt
to clarify many of the complicated steps.

Decompose the object into tiny patches as detailed in [1]

For each slicer do

Sample the surfaces intersecting the slicer

Generate the grid and the voxels and flag the cells as above

/* Keep all cells with WEAK ABOVE and BELOW flags for touch classification */

Separate the cells for multiple contours

For each individual contours do

Find the boundary using the fill algorithm

Mark the cells as BOUNDARY or EXTERIOR

/* Now find planar areas */

Search for all remaining EMPTY cells

Flag them as EXTERIOR

Flag touching STRONG points as INTERIOR BOUNDARY

If any boundary cells are touched, mark the INTERIOR BOUNDARY as EXTERIOR

If no EMPTY cell is left but there are still STRONG cells, mark them as PLANAR

Order the cells

Count the number of BOUNDARY cells

http://www.cad-conference.net/

74

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 71-75
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

If less than 2, point touch case

Now order as in the previous algorithm

Detect if there is an open contour

Now fit the B-spline curve

Create the contour for all cells with flags INTERIOR BOUNDARY

In the next sections we give more details on a few touch cases to shed some light on the algorithm
above.

The point touch case:

The point touch case is handled during the cell ordering phase of the algorithm. Ideally, there should
be no more than one point to be ordered, however, due to noise or improper sampling, occasionally
there are two points. If it is one point, it is designated as the touch point, otherwise an average is
computed of the flagged BOUNDARY points.

Fig. 3: Sphere touch (left), cone touch (right).

Figure 3 shows two examples. On the left there is a spherical surface and a touching plane. The grey
cells are EXTERIOR cells, the black is the BOUNDARY, and the colored rectangular surfaces are the tiny
patches that are in the local data structure to be processed with respect to the slicing plane. The right
image shows the cone case with a similar coloring scheme. Please note that the sampling has to be
done with care so that the apex of the cone is hit with at least the accuracy of the manufacturing
tolerance. Otherwise it will be missed and the slicing plane is declared non-intersecting.

The line and curve touch cases:

The line and curve touching cases are identified during the separation of the contour loops. In these
cases, there are cells with flags WEAK BELOW or WEAK ABOVE only. As the contour forming
algorithms proceeds (with the use of the 3x3 mask), only STRONG points are considered. However, to
consider the touch case, neighboring points are also examined, i.e. WEAK ABOVE and WEAK BELOW. At
the end there are the following cases: (1) there are only WEAK ABOVE or WEAK BELOW cells, in which
case we have a touch case, (2) if there are some WEAK ABOVE and some WEAK BELOW cells, then we
have an intersection, (3) it can happen that all of the examined cells are WEAK ABOVE and WEAK
BELOW, and this points to a (nearly) perpendicular case, i.e. the slicing plane is perpendicular to the
surface and the sampling points are within the tolerance below and above.

http://www.cad-conference.net/

75

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 71-75
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

Figure 4 shows a curve and a line touch cases. The curve case on the left is at the bottom of a torus.
The red cells are marked as WEAK ABOVE, the light black cells are the STRONG cells and the colored
patches are the surfaces that participate in the intersection process. The image on the right shows the
case when the cylinder in touching the slicer along one of its rulings. This touch case is also identified
during the contour tracing steps, with an added wrinkle: the algorithm finds a dead end, i.e. it does
not come around to find the start point. When this happens, the tracing has to resume from the start
point in the opposite direction to find the rest of the contour line. The grey cells on the figure show
EXTERIOR cells, the black is the contour and the tiny colored patches are the surfaces needed to
process the intersection curve. Note that even if it is a cylinder, a lot of tiny surfaces are in the local
data structure of the slicer. That is because the system does not know that it is a cylinder. It is
processed just like any other NURBS surface. Extra code can be inserted to account for special surface
types, such as quadric or planar surfaces. Touch cases for these surfaces can be handled separately
without any special consideration. While this is a very practical consideration, something that must be
done when implementing the method into commercial systems, it still does not solve the problem of
general touch cases and the cases when quadric patches are parts of more complex NURBS objects.

Fig. 4: Torus touch (left) cylinder line touch (right).

Conclusions:
An extension to our point-based slicing algorithm is presented that handles anomalies that show up
during slicing an object for 3-D printing. The extension requires additional bookkeeping, however, it
leaves the basic algorithm intact. The results are accurate to within the required manufacturing
tolerance. That is, as long as the various touch cases are within the step size, i.e. the cell size, the touch
cases are found and handled appropriately. We will also provide a comparison to tessellation-based
methods. As it turns out, depending on the tessellation tolerance used, not only the accuracy but also
the topology of the intersection curves change. This is not present in the point-based approach. After
many years of testing the point-based approach, it is our conclusion that it is a very viable alternative
to other techniques based on numerical methods or tessellations. It is very robust, accurate to within
required manufacturing tolerances, can handle anomalies with minor adjustments, and is reasonably
fast to outperform the printer in real time processing.

References:
[1] Oropallo, W.; Piegl, L. A.; Rosen, P.; Rajab, K.: Generating point clouds for slicing free-form

objects for 3-D printing, Computer Aided Design & Applications, 14(2), 2017, 242-249.
http://dx.doi.org/10.1080/16864360.2016.1223443

[2] Oropallo, W.; Piegl, L. A.; Rosen, P.; Rajab, K.: Point cloud slicing for 3-D printing, Computer
Aided Design & Applications, 15(1), 2018, 90-97.
https://doi.org/10.1080/16864360.2017.1353732

[3] Piegl, L.; Tiller, W.: The NURBS Book, Springer-Verlag, New York, NY, 1997.
http://dx.doi.org/10.1007/978-3-642-59223-2

http://www.cad-conference.net/
http://dx.doi.org/10.1080/16864360.2016.1223443
https://doi.org/10.1080/16864360.2017.1353732
http://dx.doi.org/10.1007/978-3-642-59223-2

