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Introduction: 
3D scanners sample coordinate data points from an object’s surface. The set of data points is called a 
point cloud. Reliable estimation of curvatures of the underlying surface at a data point of a scanned 
point cloud is an essential task in several point cloud processing applications including segmentation, 
feature detection, registration, smoothing, etc. It is well known that the local surface shape in the 
vicinity of a data point can be well approximated by a quadric surface [6]. Local quadric surface fitting 
is thus considered as one of the accurate and robust methods for estimating curvatures at discrete 
data points sampled from a smooth surface [4]. In this approach, a generic quadric surface is fitted, in 
least-squares sense, to the local neighborhood (i.e., neighboring points) of the point of interest. Then, 
the surface curvatures are calculated for the fitted local quadric surface and assigned back to the data 
point [1]. The effectiveness of this approach, however, depends on the quality of the fitted quadric 
surface, which itself depends on the selected neighboring points to which the surface is fitted. In order 
to fit a generic quadric surface, at least 10 neighboring points are needed. It should be noted that 
scanned point clouds typically have non-uniform point distribution and considerable noise. If special 
attention is not paid to the selection of local neighboring points, an imbalance would be present in the 
set of neighboring points, which can adversely affect the quality of the fitted quadric surface.   

The first author has recently identified the balance requirement of the local neighborhood for 
quadric surface fitting, and proposed the Territory Claiming (TC) algorithm for establishing a balanced 
neighborhood for this purpose [2]. The main idea behind the territory claiming algorithm is that to be 
able to well approximate the underlying geometry in the vicinity of a data point p, the points in the 
local neighborhood of the point p must sufficiently cover a small local surface patch (topologically 
equivalent to a disk) around the point p. Therefore, the set of local neighboring points around the 
point p should meet the following two requirements: directional balance and close proximity. In this 
paper, the effect of the use of the balanced neighborhood for estimating the surface curvatures at the 
discrete data points is investigated. This work demonstrates that the utilization of the neighboring 
points selected based on the territory claiming algorithm results in significant improvement of 
curvature estimation through local quadric surface fitting.   

Related Works:   
Most commonly, distance-based method (i.e., k-nearest neighbors) is used for local neighborhood 
identification, which selects the neighbors based on only their distance from the query point [1,4]. 
While the distance-based method is simple to implement, it leads to biased local neighborhoods when 
applied to the non-uniformly distributed points of a noisy point cloud. As an alternative to the 
distance-based neighborhoods, mesh-based neighbors have been proposed by researchers [3]. The 
reconstructed mesh explicitly defines the neighboring relationship, as the points connected by edges 
to the point of interest are considered as the neighbors. However, very often the mesh structure 
becomes distorted and unreliable when a relatively large amount of noise is present. Park et al. [5] 
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have proposed elliptic Gabriel graph (EGG), a neighborhood graph for selecting neighboring points 
while preventing the bias problem of distance-based methods. Their motivation has been driven by the 
need for avoiding the bias in plane fitting for estimating the normal vectors at discrete data points. 
Although their method works well for selecting a few points for plane fitting without bias, the 
expansion of the EGG neighborhood to include more points (required for quadric surface fitting) often 
results in an ill-proportioned set of points. In particular, points farther from the point of interest 
would be included, which have a harmful impact on close proximity requirement of the local 
neighborhood. In this paper, the territory claiming (TC) algorithm [2] is used for establishing a 
balanced neighborhood around the point of interest in order to fit a reliable local quadric surface. The 
accuracy of estimated curvature using the fitted surface over the TC neighborhood is analyzed and 
compared to the estimated curvature through the fitted surface over the other existing neighborhoods, 
namely distance-based (k-nearest neighbors), mesh-based and EGG neighbors.    

Curvature Estimation: 
Given a scanned point cloud from a smooth surface, we are interested in calculating the principal 
curvatures (i.e., the maximum and minimum of the normal curvature, k1 and k2, respectively) at each 
point. For an analytical surface S (x, y, z) = 0, the principal curvatures at any point on the surface can 
be calculated using the first and second fundamental forms [1]. If the underlying surface of the point 
cloud in the vicinity of a data point p can be locally approximated by such an analytical function, the 
approximated representation can be used to estimate the curvature at point p. The generic quadric 
surface of Eqn. (3.1) is found to be the most suitable option for this purpose [1].  

2 2 2
1 2 3 4 5 6 7 8 9( , , ) 0S x y z c x c y c z c xy c yz c zx c x c y c z    (3.1) 

The following steps should be taken to estimate the principal curvatures at point p (the details can be 
found in [1]):  

1) Establish a set of at least 10 local neighboring points around the point p. 
2) Fit the generic quadric surface S of Eqn. (3.1) to the neighboring points. 
3) Find the closest point p0 on the quadric surface S to the point p.  
4) Calculate the principal curvatures of the quadric surface S at p0. 
5) Assign back the calculated curvature to the point p.  

While theoretically sound, the effectiveness of the above approach in practice depends on how well-
balanced the neighboring points for fitting are selected out of non-uniformly distributed point cloud 
data points in the first step. We propose the utilization of the Territory Claiming (TC) algorithm for 
establishing a balanced neighborhood of points that helps more reliable curvature estimation. For 
completeness, the TC algorithm is briefly outlined below. For more details, readers are referred to [2]. 
Territory Claiming (TC) Algorithm   

First, the algorithm sorts all the points in a subset of the point cloud based on the distance from 
the point p, and then the nearest point to the point p is picked as the first accepted neighbor in N(p). 
Based on the already accepted neighbor, the algorithm partitions the space into two divisions: the 
claimed territory of the accepted neighboring point, and the unclaimed territory in which the next 
neighboring point can reside. The potential neighboring points are picked one at a time in the order of 
increasing distance from the point p, and checked against the following criterion: The point is accepted 
as a neighbor, only if it is not located in the claimed territory of any of the already established 
neighbors. A positive parameter β is involved in the creation of the claimed territories (more details can 
be found in [2]). Fig. 1 shows an example of selecting neighboring points around the point of interest p 
using the TC algorithm for a particular value of β (i.e., β = 2). 10 nearest points to the point p are shown 
in the figure. The points are sorted from q1 to q10 in the order of increasing distance from p. The point 
q1 is the nearest point to p and considered the first accepted neighbor. Then, the second nearest point 
q2 is checked whether it can be a neighboring point. As it is shown in Fig. 1(a), the point q2 is in the 
claimed territory of point q1 (hatched region). Therefore, the point q2 cannot be accepted as a 
neighboring point of the point p. However, q3 can be accepted as a neighbor, since it is not in the 
claimed territory of q1. Likewise, the points q4 and q5 cannot be accepted, because they are in the 
claimed territory of q3; but q6 is accepted, since it is not in the claimed territory of any of the already 
established neighbors (i.e., q1 and q3). Following this sequence, the algorithm creates the directionally 
balanced set of neighboring points {q1, q3, q6, q8}, shown with its convex hull (in green) in Fig. 1(b).   
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Fig. 1: Selecting a directionally balanced set of neighboring points around the point p : (a) the candidate 
point q2 inside the claimed territory of the accepted neighboring point q1; (b) the selected balanced set 
of neighboring points {q1, q3, q6, q8}.   

 
The algorithm searches for all the distinct directionally balanced sets of neighboring points in a range 
of β values, and selects the closest neighbor set to the point of interest as the best neighborhood. That 
is the set of neighboring points, Nβ(p), for which the average Euclidean distance of the neighboring 
points from p is minimal.   

Once the closest directionally balanced set of neighbors around the point p is established, the 
algorithm checks the number of points in the established neighborhood. If the number of points is 
less than 10, the established neighborhood can be expanded to obtain the needed number of points 
while maintaining the balance of the overall neighborhood. The algorithm removes the already 
established set of neighboring points from point cloud, and repeats the presented process once more 
to select another closest directionally balanced neighbor set around the point p from the remaining 
points of the point cloud. The union of the two sets of neighbors is the overall neighborhood. The 
algorithm iterates this remove-select-combine procedure as long as the overall number of neighboring 
points reaches at least 10 points. 

Results and Discussion: 
Case studies have been conducted to examine the effect of local neighborhood on the accuracy of 
curvature estimation. The results of the utilization of the proposed local neighborhood (established by 
TC algorithm) is compared to the results from the neighborhoods established by other existing 
methods, namely k-nearest neighbors (k-NN), mesh neighbors, and elliptic Gabriel graph (EGG) 
neighbors. The accuracy of the estimated principal curvatures, k1 and k2, is evaluated using both 
simulated and scanned noisy point cloud data sets.  

The reason for using the simulated point cloud data is that for ideal theoretical surfaces the true 
principal curvatures are known at each point that can be used as a reference for comparison. The 
approximation error of the estimated curvatures is quantified as the difference between the estimated 
value and the true value. Two different geometric shapes were employed to generate the simulated 
point clouds: the surface of a torus and a bicubic Bézier patch. On each of the two surfaces, 10,000 
points were sampled with random distribution. Then, different levels of noise (Gaussian deviates) in 
random directions were superimposed onto the sampled points to simulate noisy point clouds. The 
term “noise level” in this work refers to the standard deviation of the noise, which was specified as a 
percentage of the diagonal length of the bounding box (BBD%) of the point cloud. Fig. 2 shows noisy 
point clouds for torus and bicubic Bézier surface patch with 0.5 BBD% superimposed noise.   
 

 
Fig. 2: Simulated noisy point clouds of: (a) torus, and (b) bicubic Bézier surface patch. 

(b) (a) 

(a) (b) 
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Fig. 3 and Fig. 4 show the comparison results of the average error and standard deviation (σ) for the 
estimated k1 and k2 at the 10,000 points of the torus and Bézier patch point clouds (with the 
superimposed noise of different levels up to 0.5 BBD%), respectively. Among the compared 
neighborhoods, 10-NN and 24-NN are the k-nearest neighbors (k-NN) with k = 10 and k = 24. As the 
plots suggest, when the proposed neighborhood (established by TC algorithm) is utilized, more 
accurate and more consistent curvature estimation results are obtained in comparison with the cases 
in which other existing neighborhoods are used. In general, the superiority of the proposed approach 
is more pronounced as the noise level increases. 

 

 
Fig. 3: Comparison of principal curvatures approximation errors for torus point clouds: (a) average 
error, and (b) standard deviation for k1; (c) average error, and (d) standard deviation for k2.    
 

 
Fig. 4: Comparison of principal curvatures approximation errors for bicubic Bézier patch point clouds: 
(a) average error, and (b) standard deviation for k1; (c) average error, and (d) standard deviation for k2.    
 
The second case study evaluates the performance of the proposed approach on a scanned point cloud. 
The scanned point cloud (shown in Fig. 5(a)) containing 99,925 points has been obtained by an LDI 
Surveyor WS3040 3D laser scanner. In contrast to simulated point clouds, the true principal curvatures 
for real scanned data points are unknown. In this work, comparison of the methods was made 
according to the consistency in curvature estimation at reduced point densities due to the fact that the 
bias issue becomes more significant as the point cloud gets sparser. The principal curvatures, k1 and 
k2, at each point of the original point cloud were estimated from the quadric surface fitted to the local 
neighborhood established through each of the five neighborhood selection methods. The obtained 
curvatures for each method were regarded as the reference principal curvatures for the corresponding 
method. Then, by randomly deleting 20%, 40%, 60%, and 80% of points from the original data set, the 
point density was reduced, and new point sets (shown in Fig. 5(b-e)) were obtained.  

 

 
Fig. 5: Scanned point clouds: (a) original set, and the reduced sets with a point density of (b) 80%, (c) 
60%, (d) 40%, and (e) 20% of the original set. 

(b) (c) (a) (d) 

(b) (c) (a) (d) 

(a) (b) (c) (d) (e) 
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Fig. 6: Comparison of principal curvatures approximation errors for the scanned point clouds of Fig. 5 
with reduced point densities: (a) average error, and (b) standard deviation for k1; (c) average error, and 
(d) standard deviation for k2.     

For any of the reduced point sets, the principal curvatures were estimated at each point by each of the 
five methods and compared with the corresponding reference principal curvatures. The estimation 
error at each point is the difference between the estimated values and the reference values of principal 
curvatures. The average and standard deviation of estimation errors for all the points of the reduced 
point sets are shown in Fig. 6. It is observed that the proposed approach outperforms the other 
competitors in giving more consistent results for the reduced point sets.      

Conclusions: 

In order to improve the performance of curvature estimation for noisy point clouds via local quadric 
surface fitting, this paper proposed the utilization of the territory claiming (TC) algorithm for 
identifying a balanced set of neighboring points around the point of interest. The implementation 
results from simulated and scanned point cloud data sets substantiated the effect of local 
neighborhood on the accuracy and consistency of curvature estimation outcome. The results 
demonstrated that the proposed approach is more effective than the other existing methods in 
handling the non-uniform distribution and noise in point cloud data, and is more robust towards point 
density variation.  
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