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Introduction: 
Whip is a common tool that has been used for thousands of years. It has several distinct advantages 
over other rigid tools, such as highly flexible, light weight, under actuation, and capable of amplifying 
velocity, acceleration and force. With advanced robotic technology, can we make a robotic whip? From 
a technical point of view, a whip can be considered as a soft robot that can deform continuously. 
However, owing to the large number of degree-of-freedom and under actuation, such a robot is very 
difficult to control. In fact, whip usually follows chaotic motion. Therefore, to understand its dynamics 
is essential.  

A whip can be considered as a flexible beam. It is known that a beam can be modeled by the 
Bernoulli-Euler beam theory when its deflection is small. Though, when the deflection is large, non-
linear models must be adopted. To solve the non-linear model, the commonly used methods include 
Finite Element Analysis (FEA) and Large Deflection Theory. While these methods are effective, they 
demand for heavy computation load and often suffer from large errors. In recent year, the so-called 
Pseudo-Rigid-Body Model (PRBM) is developed [2]. Examples include Howell and Midha’s 1R PRBM [3], 
Su’s 3R PRBM [4], Yu’s 2R PRBM [7] and Yu’s 5R PRBM [8]. These examples demonstrate how to use a 
series of rigid links and revolute joints to approximate the large deflection of a flexible beam. To have 
an accurate approximation, PRBMs need a number of parameters. As a result, multiple parameter 
optimization is required and modeling errors could be significant. For example, Zhong and et al used a 
3R PRBM to model the compliant tail of their robot fish [9]. The maximum error is around 19%. 

In this paper, we use PRBM to model the dynamics of a robotic whip. The experiment validation is 
also included. 

Main Idea: 
The experiment setup and geometric linearity assumption  
As shown in Fig. 1(a)., 1R PRBM [3] uses two pseudo rigid links, as well as one revolute joints, 
represented in black, to approximate a beam bending to an arc, represented in red. The model has two 
sets of parameters: the characteristic radius factors, γ1, γ2, and the torsional spring stiffness coefficient, 

K. The torsional spring constant, K, can be computed using the following formula: 

 
2
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where E the modulus of elastic, I the moment of inertia and L = γ1L + γ2L the length of the whip. With 

Eqn. (1), the pseudo-rigid-body angle, , can then be calculated based on the applied torque, T: 
 T K  (2) 

Similarly, as shown in Fig. 1(b)., 2R PRBM is made of three links and two joints, γ1L, γ2L, γ3L and 1, 2. It 

would require four characteristic parameters, K1, K2, γ2 and γ3, to compute K1 and K2. In general,  

http://www.cad-conference.net/
mailto:mfkwok@mae.cuhk.edu.hk
mailto:biezhon@nus.edu.sg
mailto:rdu@mae.cuhk.edu.hk


48 
 

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 47-53 
© 2018 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

NR PRBM consists of 2N parameters, where N is referred as the order of the PRBM.  
 

  

 

Fig. 1: Illustration of PRBM: (a) 1R PRBM, (b) 2R PRBM, (c) 2R PRBM with a rotation angle,α. 

 

 

 

Fig. 2: The experiment setup for testing the robotic whip in free fall motion. The red arrows are the 2D 
coordinate, the yellow dash lines show whip positions, and the blue arrow indicates the moving 
direction. In the experiment, we assume friction of joint at O is negligible. 

 

Geometry dimension and properties Value 

Radius (m) 0.005 

Length (m) 1 

Mass (kg) 0.15 

Elastic modulus (GPa) 0.0229 

 

Tab. 1: The dimensions and properties of whip. 

 

Note that the robotic whip has the same geometrical dimension and material properties throughout 
the entire length. Having a similar assumption with Saggere [6], we assume that K is the same for all 
joints . With constant K and γ,  K is modified as Eqn. (3). Hence, K  is the only parameter that needs to 
be found in optimization. 
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Kinematic analysis  
Depending on the required accuracy, the robotic whip can be modeled by various PRBM models with 
different orders. As an example, Fig. 1(c). shows the 2R PRBM model with the reference frame set at 
the center, O. Its kinematical model can be derived directly. It can be shown that the center positions 
of the pseudo rigid links, P, are as follows: 
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where, α is the rotation angle; 1 and 2 are the angles of revolute joint; γ1L, γ2L, γ3L are the length of the 
pseudo rigid links with γ1 = γ2 = γ3 =1/3; subscript i = 1, 2, 3 is used to index the revolute joints. 
Moreover, their linear velocities (v) at the center of mass of links are: 

 2 2, , , 1,2,3,i i i i

d
i

dt
v P v P   (5) 

The angular velocities (w) of the pseudo rigid links are: 

 
d

w
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w i
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Dynamic Analysis 

The dynamical model can be derived by using Euler-Lagrange equation [5]. The Lagrangian of the 
robotic whip is: 
 L T V  (7) 
where, 
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where, m, IC, r and g are the mass, the moment of inertia, the radius of robotic whip and the gravity 
respectively. The three equations of motion for the modified 2R PRBM are: 
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where CH is hysteresis damping of material, which is the only damping term in this model. The air 
resistance is not considered as it is negligible when comparing with hysteresis damping of material. 

The equivalent viscous damping constant is 
eqc Km , where 

24 10

E
 is the loss coefficient for 

polymers [1]. 

 2 2
1 2 1

1 1
( ) ( )

2 2H eq eqC c c  (12) 

The aforementioned model is implemented using Mathematica©. Fig. 3. shows a simulation example, in 
which the robotic whip is modeled by 2R PRBM. At t = 0, the whip is released from the horizontal plane 
and follows a free fall. Thus, all initial joint angles and angular velocities are set to be zero in this 

example. Fig. 3. shows 10 positions of the whip, each being t = 0.1 s apart.  
 
Parameter Optimization for finding the spring constant  
As mentioned above, the spring constants for all the joints are the same and hence, there is only one 

unknown parameter, K. The objective of the optimization is to find K that minimizes the average 
relative error of the positions of 11 points on whip between the experiment and the simulation results, 
where 11-point positions on whip include base, 9 joint positions and tip position of whip. 

 

t = 0.9 

http://www.cad-conference.net/


50 
 

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 47-53 
© 2018 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

 
Fig. 3: A simulation example, in which the robotic whip is modeled by 2R PRBM with K = 0.001. In this 
example, the robotic whip follows a free fall. 
 
The robotic whip position data are captured using a video camera. The result is as follows. 

 
 
Fig. 4: The comparison of experiment and simulation results. The experiment is conducted using the 

aforementioned setup. The model is 4R PRBM with K = 0.0001. Point positions: (a) At t=0.1s, (b) At 
t=0.3s, (c) At t=0.5s, (d) At t=0.7s, (e) At t=0.9s.  

 
 
Fig. 5: Relative errors at different point positions: (a) At t=0.1s, (b) At t=0.3s, (c) At t=0.5s, (d) At t=0.7s, 
(e) At t=0.9s.                             

 
 
Fig. 6: The average relative error between the experiment and the simulation at different positions with 

K = 1, 0.1, 0.01, 0.001, 0.0001 and 0.00001, respectively. 
 
By comparing the result with different stiffness coefficients in Fig. 6., the optimal stiffness coefficient 

for 4R PRBM is K = 0.0001. In the following experiment, the optimal stiffness coefficient for 1R, 4R, 
9R, 19R, 29R, 39R, 49R, 59R, 69R, 79R, 89R and 99R PRBM will be found. 

Experimental Validation 

A large number of experiments have been conducted to validate the presented model. Two sets of 
experiment results are presented herein. 

For experiment 1, analyzing the accuracy of different number of revolute joints in PRBM. Fig. 7. 
shows the average relative error using different number of revolute joints in PRBM. Fig. 8. shows the 
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comparison of the average relative error of different number of revolute joints with corresponding 

optimal K. 

 

 

 

 

Fig. 7: The average relative error between the experiment and the simulation at different positions 

with different K  : (a) 1R, (b) 4R, (c) 9R, (d) 19R, (e) 29R, (f) 39R, (g) 49R, (h) 59R, (i) 69R, (j) 79R, (k) 
89R, (l) 99R. 

 

 

Fig. 8: The average relative error of 1R, 4R, 9R, 19R, 29R, 39R, 49R, 59R, 69R, 79R, 89R and 99R 

between the experiment and the simulation at different positions with optimal K. 

 

Number of R Optimal K K Sum of squares of average relative error (%) 

1 1×10-7 2.07×10-9 137.23 

4 0.0001 5.18×10-6 106.65 

9 0.001 1.04×10-4 111.92 

19 0.01 2.07×10-3 112.45 

29 0.01 3.11×10-3 115.18 

39 0.01 4.15×10-3 118.48 

49 0.1 0.05 111.54 

59 0.1 0.06 111.27 

69 0.1 0.07 111.32 
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79 0.1 0.08 111.72 

89 0.1 0.09 112.41 

99 0.1 0.10 113.26 

 

Tab. 2: The sum of squares of average relative error between the experiment and the simulation at 

different positions with optimal K. 

 

As shown in Fig. 8. and Tab. 2., 4R PRBM has the best fit. Although the maximum average relative error 
is small when less revolute joints are applied, the sum of squares of average relative error is 
significantly large. It implied that the shape of whip is not accurate when smaller number of joints is 
used. This may be attributed to the fact that when less revolute joints are used, the degree of freedom 
is insufficient in describing the dynamics of the whip. Thus, number of joint should be larger than 1 to 
have an accurate result. On the other hand, when large number of revolute joints are used, the 
numerical error may take a toll. Therefore, 4R PRBM is preferred for modeling in this case due to a 
smaller computation load and higher accuracy. 

For experiment 2, analyzing the relative error of the 4R PRBM for the free fall condition. Fig. 9. 
shows a comparison between the simulation and the experiment results. As shown in Fig. 9(a)., the 
maximum relative error is 11.08% while as shown in Fig. 9(b)., the average relative error is about 5.25%. 
This indicates that the 4R PRBM with a constant torsional spring can model the robotic whip with good 
accuracy. 

 

 

Fig. 9: A comparison between the experiment and the simulation using 4R PRBM with K = 0.0001:       
(a) Maximum relative error, (b) Average relative error. 

Conclusions: 
This paper presents a study on robotic whip. Based on the discussions above, following conclusions 
can be drawn: 
• Whip can be modeled by NR PRBM with the same torsional spring constant for all joints. With the 

increase of the order, N, the modeling accuracy increases.  

• The accuracy of 4R PRBM is good enough for modeling. The maximum relative error between the 
simulation and the experiment results is 11.08% and the average relative error is 5.25%. The error 
may be attributed to the fact that PRBM does not consider damping.   

In the future, two topics will be further investigated. The first one is to investigate the chaotic 
behavior of robotic whip which will occur when the time goes by. The second topic is to control 
robotic whip to reach specific target with specific speed. 
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