
387

Title:
Persistent Naming Based on Graph Transformation Rules to Reevaluate Parametric Spec-

i�cation

Authors:
Anaïs Cardot, anais.cardot@univ-poitiers.fr, University of Poitiers
David Marcheix, david.marcheix@ensma.fr, ENSMA
Xavier Skapin, xavier.skapin@univ-poitiers.fr, University of Poitiers

Keywords:
Persistent Naming, Parametric Speci�cation, Rule-based Language, Topological Model

DOI: 10.14733/cadconfP.2018.387-391

Introduction:

CAD softwares are widely based on parametric speci�cations, which record operations used during the
modeling process. Any speci�cation edition results in new models after reevaluation. We address the
issue known as persistent naming problem: the ability to �nd the right parameters and to reavaluate
correctly each operation, despite the modeling object modi�cations. As an example, let a speci�cation
made of three operations be described in Fig. 1a: a cube is created, then a slot is applied (slicing face
f into f1 and f2), followed by a slot inside f2. Then, we shorten the �rst slot width then triggers the
reevaluation (Fig. 1b): after the cube creation, its front face has not been sliced anymore, so face f2 does
not exist. The issue boils down to assign a name to each entity used in the initial evaluation in order to
match it with another entity during reevaluation (fx in this example). Most earlier works [2][3][4] separate

(a) (b)

Fig. 1: Persistent Naming Problem; (a) Initial speci�cation; (b) Reevaluation

2D from 3D processes and persistent naming solutions are entity dimension-speci�c. Some approach also
record the history of every model entity, instead of keeping track of the ones used as operations parameter
only. Finally, no solution has been presented to deal with every kind of speci�cation edition.

Main idea:

We propose a persistent naming system independent of the model dimension, the dimension of entities
(vertices, edges and so on) and withstanding the edition of the parametric speci�cation (i.e. adding,
deleting or moving operations). Our work relies on the modeling library Jerboa [2], based on the G-Map
topological model [5]. This software describes any modeling operation as a transformation rule applied

Proceedings of CAD'18, Paris, France, July 9-11, 2018, 387-391
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


388

on a graph and prevents from any topological inconsistency. We detail how we have the mechanisms of
parametric systems inside Jerboa.

G-Maps:

The d-dimensional G-Map model represents an object as a graph: nodes are called darts and each entity
is de�ned as a speci�c set of darts linked by relationships denoted as αi (0 ≤ i ≤ d). Constraints are
de�ned on αi to ensure that objects represented as G-Maps are quasi-manifolds. An example is shown in
Fig. 2: (a) Geometric representation of a 2D object made of two faces; (b) Faces are separated from each
other and are connected by an α2 arc (blue line); (c) Face edges are separated and α1 arcs (red lines) link
their common vertices; (d) Edges are split and their ends are connected by α0; (e) those ends form the
graph nodes (darts), labeled a,. . .n. This graph representation extends seamlessly in any dimension. An
entity is represented by a single dart and a speci�c combination of αi: for example, the face (resp. edge,
vertex) related to dart e is made of all darts starting with a and reachable using α0 and α1 (resp. α0 and
α2, α1 and α2) to produce the set of darts {a, . . . , f} (resp. {e, d, h, g}, {e, f, g, n}). In the following, the
list of αi,. . .αj (0 ≤ i, j ≤ n) used to form an entity is called orbit type and is represented as 〈i . . . j〉.
For instance, the orbit type de�ning a 2D face is 〈01〉. More generally, for any d-dim, topological model,
there are (d + 1)2 di�erent orbit types, including the one designing a single dart and denoted as 〈〉; in
2D, those orbit types are 〈〉, 〈0〉, 〈1〉, 〈2〉, 〈01〉, 〈02〉, 〈12〉, 〈012〉.

(a) (b) (c) (d) (e)

Fig. 2: G-Map representation of 2D objects; Only αi relationships connecting pairs of di�erent darts are
represented

Graph Transformation Rules:

A graph transformation rule takes a G-Map as input and produces another G-map as output. Rules
de�ned in Jerboa are graphically described as two patterns made of nodes separated by a left-to-right
arrow (see Fig. 3a-b). The pattern on the left is to be �ltered in the input G-Map, to identify every part
which matches this pattern. The pattern on the right describes the transformation to apply on each of
those matching parts, in order to produce the output G-Map. Fig. 3a shows the rule creates a triangular
face from scratch: nodes m0 to m5 are generated from scratch and are linked using α0 and α1 to create a
face as the one shown in Fig. 3c. In Fig. 3b, the left pattern is made of node n0 associated with the orbit
type 〈01〉. Filtering any G-Map using this pattern returns all sets of darts linked by α0 or α1. The right
pattern is made of three pairs (node, orbit type): n0 is copied in triplicate to produces nodes m0, m1 and
m2 (in Fig. 3d, each dart a0,. . . ,f0 has been triplicated in (a0, a1, a2). . . , (f0, f1, f2)), forming the darts
of the output G-Map. Regarding m0, its orbit type 〈0_〉 means that m0 keeps the same relationship α0

as n0, but α1 is deleted. Regarding m1, 〈_2〉 means that the initial α0 is deleted and the initial α1 is
replaced with α2. We proceed the same regarding m2, Fig. 3e shows the state of the output G-Map at

Proceedings of CAD'18, Paris, France, July 9-11, 2018, 387-391
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


389

this stage. Next, relationships α0 and α1 between m0, m2 and m2 are mirrored in the output G-Map
(Fig. 3f): the initial face has been subdivided in three sub-faces in a consistent way. Note that this rule
can be applied on any 2D polygonal face.

(a) (b)

(c) (d) (e) (f)

Fig. 3: Graph transformation rule; (a) TriangleCreation rule; (b) FaceTriangulation rule; (c) Input G-
Map; (d) Darts of the output face; (e) First phase of αi setup; (f) Second phase and output G-Map

Persistent Naming System:

Persistent naming focuses on assigning an identi�er to entities used as parameters of modeling operations,
during the initial evaluation. This identi�er should allow the matching between those entities and the
right ones available in the reevaluation. Our naming system is based on darts: each dart of the entity
upon which a rule is applied is assigned a Persistent Id (or PId). Each PId is composed of one or
several pairs RuleNum-NodeNum, where RuleNum is the number of the rule in the initial evaluation and
NodeNum is the node instance in the right part of the rule. As an example, a speci�cation composed of
two rules is shown in Fig. 3a-b: {1-TriangleCreation; 2-FaceTriangulation}. First rule generates nodes
m0 to m5, so after applying it, the output G-Map contains darts a0 to f0 (Fig. 3c); their resp. PId are
1-m0,. . . ,1-m5. Second rule is then applied on the face, resulting in the G-Map shown in Fig. 3f. Each
dart of this G-Map is associated with one node among m0, m1 or m2 and its PId is extended accordingly.
As an example, darts a0, a1 and a2 in Fig. 3f are derived from dart a0 in Fig.3 b: they share the same
PId pre�x 1-m0. Then, their PId is extended with speci�c information related to m0, m1 or m2: the
complete PId of a0 (resp. a1, a2) is therefore {1-m0; 2-m0} (resp. {1-m0; 2-m1}, {1-m0; 2-m2}). We
proceed the same way for each dart of the output G-Map (as an example, PId of darts f0, f1 and f2
are resp. 1-m5; 2-m0, 1-m5; 2-m1 and 1-m5; 2-m2). Next, we de�ne the Persistent Name (or PN ) of
entities which are used as parameters of operations, as the concatenation of the PId of one of its darts
and the orbit type which represents this entity. For instance, the PN of the face related to dart a0 in
Fig. 3e is de�ned as {1-m0; 2-m0}.〈01〉. Assume dart a1 has been designated as the representative dart
related to the face upon which 1-TriangleCreation has been applied. Then the speci�cation's contents
are {1-TriangleCreation(); 2-FaceTriangulation({1−m0; 2−m1}.〈01〉}).

Bulletin Boards and History Records:

Proceedings of CAD'18, Paris, France, July 9-11, 2018, 387-391
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


390

It is necessary to trace the evolution of orbit types between successive operations. Di�erent kinds of
evolutions are: Creation, Deletion, Merge, Modi�cation, No Change and Split. To trace the evolution
after a single operation, each rule is associated with a table called Bulletin Board (BB), and indexed by
orbit types. Each table entry contains at least one tree graph with one or several leaves. The tree roots
contain nodes of the rule's left part, combined with a speci�c orbit type. The tree leaves contain nodes
of the rule's right part, which share the same leaf if they belong to the same orbit type as the entry
index. The tree arcs are labeled with the kind of evolution undergone by orbit types. Fig. 4a describes
the Bulletin Board entry indexed by 〈01〉 (2D face orbit) related to the Triangulation rule (Fig. 3b).
The tree leaf regroups m0, m1 and m2, meaning that darts related to these nodes belong to the same
2D face in the output G-Map. Let (a0, a1, a2) be those related darts: as shown in Fig. 3f, the face also
contains f0, f1, f2. It follows that all those darts have been generated using darts a0 and f0 of the input
G-Map (Fig. 3c). a0 and f0 are related to node n0; moreover, since they are linked by α0, the tree root
is de�ned as n0.〈0〉. The tree arc is labeled Split, meaning that the initial face has been split into several
three sub-faces resp. generated by initial darts (a0, f0), (a1, a2) and (f1, f2). Every entry of the BB is
�lled in the same way.

(a) (b) (c)

Fig. 4: (a) Entry 〈01〉 of the FaceTriangulation rule's Bulletin Board ; (b) Result of applying Coloration
rule on the face (orbit type 〈01〉) related to a1; (c) History Record (HR) of this face; Left: 〈01〉-indexed
entry of FaceTriangulation rule; Right: 〈0〉-indexed entry of TriangleCreation rule

To trace evolutions along several operations, we used additional structures called History Records,
de�ned for every PN. Let us add a third operation to the speci�cation: 3-Coloration, which is applied on
orbit type 〈01〉 related to dart a1 (see Fig. 4b). As a reminder, a1's PId is {1−m0; 2−m1}. Therefore,
the PN used as parameter of 3-Coloration is {1−m0; 2−m1}.〈01〉. The creation of the HR is achieved
backwards, as shown in Fig. 4c, following red arrows: (1) Coloration is applied on 〈01〉 (related to a1),
which is used as an index in the BB related to 2-FaceTriangulation: the BB 's entry is shown in Fig. 4a.
(2) Using the last part of a1's PId ({2−m1}), we select in this entry the tree which contains m1 and (3)
we use the orbit type 〈0〉 de�ned in the tree root as an index for the BB related to 1-TriangleCreation.
The matching entry is shown on the right side of Fig. 4c: nodesm0 tom5 shown in Fig. 3a are partitioned
in three pairs of nodes linked by α0. The common root of these pair is ∅, meaning that have been created
from scratch. (4) The �rst part of a1's PId ({1−m0}) is used to select the tree which contains m0. The
orbit type related to the tree root is ∅, meaning that there is no previous operation.

Reevaluation:

To handle any edition of the initial speci�cation, we create a matching graph for every parameter of inter-
est, and we rely on its HR to determine how it is a�ected by the edition. As an example, we insert inside
the speci�cation the operation 1.1-VertexInsertion, between 1-TriangleCreation and 2-FaceTriangulation.
Fig. 5a-d show the successive steps of the reevaluation. The PN build from a1's PId and used as pa-

Proceedings of CAD'18, Paris, France, July 9-11, 2018, 387-391
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


391

rameter for 3-Coloration is {1 −m0; 2 −m1}.〈01〉; we use its HR and complete the matching graph at
each step of the reevaluation to take into account 1.1-VertexInsertion. The matching graph is shown in
Fig. 5e; note that although the HR has been created in reverse order, we follow it now in the correct
order. (1) 1-TriangleCreation is reevaluated and a triangle identical to the initial one is created (Fig. 5a).
The beginning of the HR (the 〈0〉-indexed entry of TriangleCreation rule in Fig. 4c) indicates 1−m0, so
we consider p0.〈0〉 (Fig. 5e), the orbit based on the dart generated from node m0 of the TriangleCreation
rule. (2) 1.1-VertexInsertion is applied (Fig. 5b). The BB related to (not shown here) VertexInsertion
rule indicates that there is a split for orbit type 〈0〉: indeed, the edge composed of (p0, u0) has been split
into distinct edges made of (p0, w0) and (u0, v0). Therefore, in the matching graph, two arcs labeled Split
start from p0.〈0〉 and point to one representative dart of each edge: we choose p0 and u0, still combined
with 〈0〉. (3) 2-FaceTriangulation is reevaluated (Fig. 5c). This time, similarly to �rst step, the entry
related to 2−m1 in the BB 's indexed 〈01〉 (left part of Fig. 4c), leads to darts p1 and u1 generated by
node m1 of the FaceTriangulation rule: the matching graph is updated with an arc labeled Split, starting
from p0 (resp. u0) and ending on p1 (resp. u1). (4) 3-Coloration is applied on each matching graph's
leaf, leading to the coloration of faces containing p1 and u1, as intended.

(a) (b) (c) (d) (e)

Fig. 5: Speci�cation reevaluation; (a-d) Successive steps; (e) matching graph

Conclusion:

Our approach allows to reevaluate parametric speci�cations, regardless of the model dimension. The only
kind of edition described is adding operation into speci�cations, but our method manages removing or
changing operation order as well. Some development work on the Jerboa library is still required to test
more complex speci�cations.

References:
[1] Baba-Ali, M.; Marcheix, D.; Skapin, X.: A Method To Improve Matching Process by Shape Char-

acteristics in Parametric Systems. Computer-Aided Design and Applications, 3(16), 2009, 341-350.
https://doi.org/10.3722/cadaps.2009.341-350

[2] Belhaouari, H.; Arnould, A.; Le Gall, P.; Bellet, T.: Jerboa, A Graph Tranformation Library for
Topology-Based Geometric Modeling, Int. Conf. on Graph Transformation, 2014.

[3] Chen, X.; Ho�man, C-M.: Towards feature attachment, Computer-Aided Design, 27(9), 1995, 695-
702. https://doi.org/10.1016/0010-4485(94)00027-B

[4] Kripac, J.: A mechanism for persistently naming topological entities in history-
based parametric solid models, Computer-Aided Design, 29(2), 1997, 113-122.
https://doi.org/10.1016/S0010-4485(96)00040-1

[5] Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasimani-
folds, Int. Journal of Computational Geometry and Applications, 4(3), 1994, 275?324.
https://doi.org/10.1142/S0218195994000173

Proceedings of CAD'18, Paris, France, July 9-11, 2018, 387-391
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

https://doi.org/10.3722/cadaps.2009.341-350
https://doi.org/10.1016/0010-4485(94)00027-B
https://doi.org/10.1016/S0010-4485(96)00040-1
https://doi.org/10.1142/S0218195994000173
http://www.cad-conference.net

