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Introduction: 
With the advancements in the field of computers and it’s increasing use within the industrial design 
process, the need for the physical design prototypes has been extensively reduced and replaced with 
digital models: made and analysed with computers. Nowadays, a product design typically starts with a 
Computer-aided design (CAD) geometry and eventually delivers an optimized geometry in CAD which 
is used for manufacturing. The commercial CAD systems like CATIA V5, SIEMENS NX, SolidWorks etc. 
use feature-based modelling strategies to create a parametric CAD model. For these models, the shape 
can be updated by changing values of the parameters defining different features used to create the 
model. The constraints on shape imposed by the features in the CAD model feature tree should mean 
that the optimized part can be manufactured, providing the features were well chosen. To a large extent 
this will depend on the skill and experience of the CAD model creator, and their ability to visualize and 
parameterize the design space. The downside of using a feature-based CAD model to optimize the 
design is that often it is not obvious from the parameterisation which parameter value(s) need to be 
modified to achieve the desired shape change, especially when the person implementing the change is 
not the creator of the CAD model. In industry today, the resulting modification becomes a case of trial 
and error, which is time consuming for simple models with tens of parameters, and is unfeasible for 
complex component models with hundreds or thousands of parameters. 

Robinson et al. [8] used adjoint sensitivities [2,7] and design velocity [1] (the boundary shape 
movement resulting from a change in a CAD parameter) to define the effectiveness of CAD parameters 
to be used as optimization variables for minimization of a defined objective function. Adjoint surface 
sensitivity gives the information about how the objective function changes for an infinitesimally small 
movement of each surface mesh node in the normal direction. The primary attraction of adjoint methods 
is their ability to compute gradient information at a computational cost which is essentially independent 
of the number of design parameters. This, in turn, opens the possibility to explore significantly larger 
design spaces than those with traditional approaches, in time-scales which are acceptable for industrial 
design. 

Overall Aim: 
Parametric effectiveness is a rating of the quality of CAD parameters to be used for optimization. It 
compares the maximum change in performance that can be achieved using existing parameterization, 
to the maximum performance improvement that could be obtained if the model is not constrained by 
any parameterization. The aim of this work is to present an automated approach to efficiently calculate 
the parametric effectiveness for the set of parameters defined within a CAD modelling software CATIA 
V5. The approach is further developed to select a subset of parameters which provides the greatest 
potential for performance improvement. While one of the benefits of adjoint optimization is that the 
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cost of calculating sensitivities is virtually independent of the number of design variables, modifying 
the CAD model by using all parameters in the optimization step is potentially costly, and so identifying 
a selected set of key parameters from all parameters is advantageous.  

Background: 
In a feature-based CAD modelling system like CATIA V5, a part model is comprised of individual features 
which are combined to represent an overall shape. In order to capture the CAD surface movement with 
respect to the change in CAD parameters, the design velocity is calculated. This is the movement of the 
CAD model boundary in the normal direction due to a change in the parameter value, and can be 
mathematically formulated as 

𝑉𝑛 = 𝛿𝑋𝑠 ⋅  �̂�, (1) 
where 𝛿𝑋𝑠 is the movement of surface nodes and �̂� is the outward unit normal of the surface at that 
point. The convention adopted throughout this work is that a positive design velocity represents an 
outward movement of the boundary, and negative is inward. 
 
Parametric Sensitivity 
It is a measure of change in performance (𝐽) caused by the change in the value of a parameter for which 
a shape change occurs. If the design velocity (𝑉𝑛) over the surface (𝐴) for a parametric change (𝑑𝑃) is 
known, along with the adjoint surface sensitivity (𝜑) the parametric sensitivity, 𝑆𝑖 is 

Si =
d𝐽

dP
= − ∫  𝜑𝑉𝑛  𝑑𝐴

𝐴

 (2) 

In general, adjoint analysis results (𝜑 in Eqn. 2) are produced as a set of values corresponding to a mesh 
over the model’s boundary. 
 
Parametric Effectiveness 
The parametric effectiveness was proposed in [8] as the ratio of the change in performance achieved by 
perturbing all the parameters in an optimum way (assumed here to be the steepest descent direction) 
subject to the constraint of a unit root-mean-squared boundary movement. When computing parametric 
effectiveness, a constraint on overall boundary movement is imposed for each parametric perturbation.  

The detailed mathematical derivation of the measure can be found in [8]. A summary is that the 
optimum change in performance per root mean squared design velocity over the boundary for a model 
which is not constrained in the manner in which it can move by its parameterization can be predicted as 

(
𝑑𝐽

𝑑𝑉
)

𝑜𝑝𝑡𝑖𝑚𝑢𝑚
= −√𝐴 ∫ 𝜙2𝑑𝐴

𝐴

. (3) 

Assuming the optimum parametric performance improvement is obtained by perturbing the parameters 
in the direction of steepest decent, the vector of parameter changes can be written as 

𝑑𝑃 = 𝑘{𝑆1𝑆2 … … }, (4) 

where 𝑘 is a multiplier specifying the magnitude of the steepest decent vector. The optimum 

performance change per unit of root-mean-square design velocity, for a parameterized model is given 

by 

(
𝑑𝐽

𝑑𝑉
)

𝑝𝑎𝑟𝑎𝑚
= −√

𝐴

∫ (∑ 𝑆𝑖𝑉𝑛𝑖)𝑛
𝑖=1

2
𝑑𝐴

𝐴

  ∑(𝑆𝑖)2

𝑛

𝑖=1

, (5) 

The parametric effectiveness is given by 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =

(
𝑑𝐽
𝑑𝑉

)
𝑝𝑎𝑟𝑎𝑚

(
𝑑𝐽
𝑑𝑉

)
𝑜𝑝𝑡𝑖𝑚𝑢𝑚

. (6) 

Parametric effectiveness ranges from 0 to 1. A low parametric effectiveness indicates that the parameters 
in the model will not be able to perturb the model shape in the manner the adjoint sensitivity map 
suggests. 
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Automated Approach for CAD Parameter Selection: 
It is shown in [8] that parameters selected based on parametric effectiveness are potentially better at 
localising the shape change in regions of high adjoint sensitivities. It also states that the optimum set of 
parameters may not include all parameters and should be identified using a power-set approach. Thus, 
to evaluate the quality of parameterization for the purpose of optimization it is beneficial to select the 
sets of parameters which give the highest parametric effectiveness. This requires the parametric 
effectiveness to be calculated for all possible combinations of parameters. While this could be achieved 
in a brute-force manner by formulating a power-set of the parameters and calculating parametric 
effectiveness of each combination, the power-set of any set ℚ of 𝑛 parameters are the set of all subsets 
of ℚ (including the empty set) giving a total of 2𝑛 − 1 different parametric combinations. The 
implementation of power-set methodology becomes computationally prohibitive when number of 
parameters is large, as it is for most industrially relevant CAD models. So, in this work an approach is 
formulated to efficiently obtain the optimum parametric combination giving highest parametric 
effectiveness without exhaustively evaluating Eqn. 5 for all parametric combinations. This is achieved 
as: 
Step 1: All parameters with an individual parametric effectiveness greater than 0.02 are selected. The 
number of parameters = 𝑚. (It is assumed parameters with an individual parametric effectiveness 
smaller than 0.02 can be ignored). 
Step 2: For the 𝑚 parameters in Step 1, all the possible combinations of 2 parameters are created, each 
referred as a set. Here, 𝐂2

𝑚 sets are formed, where 𝐂 is a combinatorial operator. Sets are ordered with 
the parameter with the lowest numerical identifier as the first member. 
Step 3: The sets are grouped together such that 𝑚 − 1 groups are created to contain parameter sets with 
the same first member. The parametric effectiveness of each set in each group is computed. 
Step 4: The set with highest parametric effectiveness is selected for that group (and the other sets are 
deleted). 
Step 5: For each group in Step 3, new sets are created by adding one of the remaining parameters to the 
set selected for each group in step 4.  
Step 6: If the resulting parametric effectiveness calculated for a group in step 5 is less than that 
calculated for the same group in step 4, then the set from step 4 is selected and the new sets for that 
group are deleted and that group is considered complete. Else, Step 4 to Step 6 are repeated. 
Step 7: when all groups are complete, the group containing the set with the maximum parametric 
effectiveness is identified. The parameters it contains are the subset of parameters which should be used 
to optimize the model 

Application-DrivAer Model: 
The developed framework was applied to an automotive noise reduction problem, with the use of a 
surrogate model for aeroacoustics [6]. The model under investigation is the TUM DrivAer vehicle [3], 
using a fast-back configuration with smooth underbody and closed wheels. The CAD model of the car 
mirror was created in CATIA V5 using a series of points, splines and surfaces. The wireframe of the 
mirror CAD model is shown in Fig. 1(a). The surface fitting methods in CATIA V5 (like multi-section 
surface and fill surface) were then used to create the outer surfaces and produce 3D CAD model of the 
mirror with 2925 CAD parameters which controlled the position of individual points. The flow equations 
are solved using the standard steady state incompressible OpenFOAM© solver simpleFoam. The adjoint 
equations are solved using the Helyx Adjoint solver, provided by ENGYS [4]. Moreover, to formulate the 
continuous adjoint method the fully differentiated Spalart-Allmaras turbulence model based on wall 
functions is used [5]. Here the optimization process alters the shape of the mirror geometry, targeting a 
shape which transmits less noise to the interior of the car. The low frequency noise perceived inside the 
cabin can be linked to the turbulence level at the area directly outside of the driver side window. In this 
sense, a surrogate aeroacoustics objective function is formulated as the integral of the squared turbulent 
viscosity over a volume near the side window. 

𝐹𝑛𝑜𝑖𝑠𝑒 = ∫ 𝜈𝑡
2

 

𝛺

𝑑𝛺, (7) 

It is important here to note, that without the differentiation of the turbulence model, relying on the 
“frozen turbulence” assumption, dealing with an optimization problem of this kind would not be 
possible, as the objective function itself depends on the turbulent variable. For the flow and adjoint 
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analysis, half of the car was meshed. The computational grid consisted of 5 million cells. The adjoint 
sensitivity map for minimizing noise inside the car is computed at the first optimization cycle and is 
presented in Fig. 1(b), where red areas must be pushed inward to the surface while blue are to be pulled 
outward to reduce the objective function. 
 

  
 

Fig. 1: DrivAer car mirror. (a) wireframe model, (b) adjoint sensitivity map. 

 

The computational effort required to update the parametric DrivAer model in CATIA V5 is shown in 
Table 1 for all parameters and the set with highest parametric effectiveness. It can be seen that updating 
all the parameters of the CAD model is computationally much more expensive. Such an update would 
be required for each step in an optimization. Further, this step of CAD updating cannot be parallelized 
and thus updating only a selected set of CAD parameters is beneficial. 
 

 Original CAD model 

(2925 parameters) 

Most efficient parameter 
(48 parameters) 

CAD update time 10716 s 129 s 

 
Tab. 1: Time required to update the parametric CAD model. 

 
Further, the benefit of using parametric effectiveness to select the set of parameters for optimization is 
substantiated by comparing the design velocities when the when the model is perturbed using the most 
effective parametric combination (consisting of 48 parameters) found using the approach presented in 
this work (Fig. 2(a)) to the design velocity when 48 parameters with highest parametric sensitivities are 
perturbed (Fig. 2(b)) in the steepest decent direction. The overall boundary movement for all these 
perturbations is kept equal to a small value 𝑑𝑉 = 1𝐸−4. It can be found that the parametric combination 
with highest parametric effectiveness moves the model mostly in the areas of high sensitivity and very 
little in other regions, while other parameter set move the boundary both in the areas of high and low 
adjoint sensitivity. 
 

 
 

Fig. 2: Design velocity for the same overall boundary movement, (a) most effective parameteric 
combination, (b) 48 most sensitive parameters. 
 
Optimization 
The shape optimization of car mirror was performed using a steepest descent strategy to update the 
design variables with the computed gradients. After the optimization algorithm converged, the optimal 
geometry was by 6.8% “quieter” for the most effective parametric combination and 4.1% when 48 most 
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sensitive parameters were used. Comparing the design velocities between the initial and optimized 
geometries obtained using most effective parameters (Fig. 3), it is seen that the top and bottom of the 
neck of the mirror has been pushed in to suppress the generation of turbulence on the wake of the 
mirror and consequently reducing the turbulence viscosity flowing through the volume over which the 
objective function is integrated. 
 

 
 

Fig. 3: Design velocity comparing boundary movement between starting and optimized geometry. 

Conclusions: 
In this work, an automated approach is described which calculates the parametric effectiveness of CAD 
model parameters and selects the optimum combination of parameters to be used for optimization. The 
rationale behind using this approach is outlined in terms of time required to update a complex 
parametric CAD model during the optimization, which is an important factor to be considered when 
using the optimization process in an industrial workflow. 
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