
367

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 367-371
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

Title:
A Compact Face-Based Topological Data Structure for Triangle Mesh Representation

Authors:
Yingzhong Zhang, zhangyz@dlut.edu.cn, Dalian University of Technology
Xiaofang Luo, lxf@dlut.edu.cn, Dalian University of Technology
Jia Jia, 49978527@qq.com, Dalian University of Technology

Keywords:
Triangle Mesh, Topological Data Structure, Mesh Representation, STL, Face-based Data Structure

DOI: 10.14733/cadconfP.2018.367-371

Introduction:
As triangle meshes have many unique characteristics, they are widely used to represent the surfaces
of the geometric objects in computer graphics, CAD applications, 3D printing, and computational
science [2]. In practical applications, a mesh model needs to carry out a lot of geometric information
processing, such as Boolean operations, mesh segmentation, and feature reconstruction, which
requires a lot of topological information among the mesh entities [2],[5]. A complete topological
representation for triangle meshes is the foundation to meet above application requirements. On the
other hand, as a surface is usually represented with an assembly of tiny triangle facets, in a complex
mesh model, the number of triangular facets may reach millions. As a result, the ever-increasing size
and complexity of meshes impose stress on both memory usage and processing time. The storage
space, querying efficiency, and implementation complexity are important criteria for evaluating a
mesh representation model.

The topological data structure has been researched intensively due to its importance. A wide
variety of data structures for triangle meshes have been proposed. The half-edge data structure (HEDS)
[7] is the most popular data structure and has been constantly improved [1-4],[8], which can
succinctly describe the topological connection relations among geometric entities of triangle meshes
and implement traversal search with high efficiency without any conditions. Typical implementations
of HEDS include Open-Mesh, Surface_Mesh [2],[8], Directed Edge representation [3], Compact Array-
Based data structures [1],[4], etc. Most HEDS employ arrays to store geometric and topological data in
order to reduce memory footprints. However, using array structures many object references depend
on the array index, which affects some computational performances. Hence, how to achieve a balance
between memory requirements, performances and efficiency, and uniformly to represent and process
manifold meshes and non-manifold meshes have been the challenges to be confronted [4].

This paper aims at above challenges, focuses on the STL mesh applications in reverse engineering,
and presents a novel compact face-based geometric and topological representation for triangle
meshes. The presented model makes full use of the implicit semantic relations among vertices, edges,
and triangle faces, which results in memory consumption decrease and improves the flexibility,
scalability, and usability of the mesh model.

Main Idea:
Vertex neighborhoods in triangle meshes
A vertex neighborhood of a vertex v is the set of vertices directly connected to v via an edge and v
itself. In the mesh information processing, traversing the ring neighborhood of a vertex is an extremely
important operation, which passes through the all incident faces attached to a given vertex and can
obtain the set of the incident vertices connected to the vertex. The performing efficiency of this

http://www.cadconferences.com/

368

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 367-371
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

traversal operation is usually considered to be an important indicator to evaluate a topology data
structure. Hence, at first we observe the topological dependence among the topological entities, i.e.
vertices, edges and faces, by performing a 1-ring neighborhood traversal as shown in Fig. 1.

v1

v1

v2

v3

v4v5

v6

f1 f2

f3
f4

v2

v3

v4

v5

v6

v7

v1

v3

v4

v5

v6

v7

v2

f1

f2

f1 f2

f3

f4f5

f6

f3

f4f5

f6

f7

Fig. 1: Ring neighborhoods of a vertex: (a) An open 1-ring neighborhood, (b) A closed 1-ring
neighborhood, and (c) More than a 1-ring neighborhood.

It can be seen from Fig. 1 that we can set an incidence relation between a vertex object and a face
object. Specifically, a vertex object contains a reference (or pointer) to a face object where it locates. As
a result, from a vertex, its incident face can be visited. At the same time, in a face object, except its
three vertices, three incidence relations to its mate faces are also set. A triangle face has three adjacent
faces at most. The adjacent faces of a face are defined as its mate faces each other. For example, in Fig.
1(c), the mate faces of the face f1 are f2, f6, and f7.

After setting the above incidence relations, we can easily implement a query of 1-ring
neighborhoods for a given vertex. As shown in Fig. 1(b), from the given vertex v1, f1 can be obtained at
first; and from f1, v2 and v7 can be obtained. From the order of vertex v7, a mate face of f1, namely f6, can
be obtained. Performing the similar loop program, all vertices on the 1-ring neighborhood of vertex v1
can be obtained. The performing operation is in constant time and independent on the size of meshes.
An object-oriented face-based topological representation model
Based on the above analysis and geometric characteristics of triangle meshes, we can abstract
following topological object classes according to object-oriented methods.

• CVertex class
In triangle meshes, vertices are 0-cells of a mesh complex, which decide the position, shape, and

size of a mesh. At the same time, a vertex is one of vertices of an edge, so it is incident to an edge. The
vertex is a fundamental geomantic entity in a polygon mesh. Hence, we abstract a CVertex class to
represent vertex objects.

Apart from the position coordinates of a vertex, we set a pointer to a triangle facet object where
the vertex locates as an attribute of the CVertex object. Through the pointer, the incident relationship
between the vertex and its incident faces can be set up.

• CFace class
A face is also a fundamental topological entity in the boundary representation of geometric models

and OpenGL rendering. In triangle meshes, we employ the face entity to represent the 2-cells of a mesh
complex. A face is a convex triangle surrounded by three edges which are sequentially connected by
three vertices. As the characteristics of convex polygons, the boundary of a face can be defined
implicitly by its vertices. The counterclockwise sequential connection of vertices of a face forms its
triangle boundary and its normal vector. Hence, the edges of a face entity don’t need to be explicitly
defined, which can reduce the memory footprint.

• CWireEdge class
In general, the wire-edge is a degenerate triangle face as resulting from some cases and appears in

non-manifold meshes. In this paper, we define the CWireEdge class as the subclass of the CFace class
to represent wire-edges, which inherits all geometric attributes of the CFace class.

In fact, in a wire-edge object, only two vertices are used. When a wire-edge object needs to be
represented, we can represent it as an instance of the CWireEdge class. As the CWireEdge class is the
subclass of the CFace class, the object instance of the wire-edge can be stored in the face container and
can be uniformly represented and processed.

http://www.cadconferences.com/

369

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 367-371
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

• CMesh class
A mesh is a finite collection of 2-dimensional cells, or face entities. We employ the CMesh class to

represent a whole mesh or a local sub-mesh of a three-dimensional geometric object. According to
above analysis, only the face and vertex are needed to be explicitly defined in triangle meshes.

On the above analysis and class definition, a novel object-oriented face-based topological
representation model for triangle meshes is presented as shown in Fig. 2.

1

CMesh

- FacetArray : vector;

- VertexArray : vector;

isStoredIn

FaceContainer

- FaceArray : vector<CFace*>;

- VirtualFaceArray : vector<CFace*>;

CFace

- Vertex [3] : CVertex*;

- MateFace[3] : CFace*;

CVertex

- x : float;

- y : float;

- z : float;

- pBelongedFace : CFace*;

hasFaces

hasVertex

hasBelongedFace1

1 3

hasMateFaces

1

3
+ NextVertex(CVertex* v) : virtual CVertex*;

+ PrevVertex(CVertex* v) : virtual CVertex*;

+ NextMateFace(CVertex* v) : virtual CFace*;

+ PrevtMateFace(CVertex* v) : virtual CFace*;

CWireEdge

+ NextVertex(CVertex* v) : virtual CVertex*;

+ PrevVertex(CVertex* v) : virtual CVertex*;

+ NextMateFace(CVertex* v) : virtual CFace*;

+ PrevtMateFace(CVertex* v) : virtual CFace*;

1

VertexHashTable

- VertexHashArray : vector<CVertex*>;

hasVertices

isStoredIn

Fig. 2: Class diagram of the presented model.

In the presented model, a mesh object sets up two containers to store vertex objects and face objects.
Each face object contains three pointers to its three boundary vertex objects, and three pointers to its
three mate face objects. Each vertex object contains a pointer to its incident face. As a result, to

represent topological information, the data structure will occupy 4×(3+3) = 24 bytes for a face, and 4

×1 = 4 bytes for a vertex.

In a manifold triangular mesh, according to Euler relation among vertices, edges and faces, the
number of the triangular facet is approximately equal to two times the number of vertices, namely F =
2V; To represent topological relations of a mesh with n vertices, this data structure only requires 4n +
2×24n = 52n bytes memory spaces, which demonstrates that this data structure is compact. Detailed

comparison with other data structures will be provided in the later section.
Topological relation representation
The topological relations between geometric entities can mainly be categorized into incidence relations
and adjacency relations. The following will analyze the capability of this data structure to represent
the two relations:

• Incidence relation representation
According to the incidence relation definition, two simplices are incident to each other if one of

them is a part of the other. Typical incidence relations include the vertex-edge (or edge-vertex) relation,
the vertex-face (or face-vertex) relation, and the edge-face (or face-edge) relation.

In this representation, edges are implicitly represented, namely, an edge is represented by two
sequential vertices on the same face. Hence, given a vertex, we can get edges that are incident the

http://www.cadconferences.com/

370

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 367-371
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

vertex. A face contains three vertices, but in this model, a vertex is only to set to an incident face
pointed by pBlongedFace value.

• Adjacency relations representation
In the same face, if a vertex is given, to get its adjacent vertices it is required to find the array

index of the given vertex. Suppose the array index of a vertex as i, the array index of the next adjacent
vertex is (i+1)%3, and the index of the previous adjacent vertex is (i+2)%3. The symbol ‘‘%” is the
division remainder.

In this representation, the adjacent relation between two triangles can be obtained by their mate
face pointers which are set in each face object. A face shares an edge with one of its mate faces. The
storing order of mate faces is same as the order of vertices. As a result, from a vertex in a face, the
corresponding mate faces of the face can be easily obtained.
Construction of mesh models from STL files
It is also very important for a topological representation model to be constructed effectively and
efficiently. The following will simply describe how to construct a mesh model with the data structure
as mentioned above from STL files.

In reverse engineering, STL is an exchange file format for triangular mesh data [9]. Currently, STL
has become a standard for data input of all types of rapid prototyping systems and has been widely
used in many fields. However, A STL file just lists the geometry information of each single triangle,
resulting in a large amount of redundant data, and lacks topological information between the
geometric entities. Hence, we construct the topological representation of a STL mesh according to the
following procedures.

• Construction of vertex objects
The construction of vertex objects needs to finish two tasks: creating a geometric vertex and

setting an incidence relation with it’s an incident face object. The setting operation is usually
performed after completing the incident face object.

A geometric vertex can be easily created by its geometric coordinates provided in STL files. The key
issue is to remove the vertex repetition. The efficiency of searching vertices is very important for a
complex mesh. Therefore, many methods to improve the efficiency of searching vertices were
proposed in the past, such as the balanced binary tree, octree, and hash table methods [6]. In this
paper, we employ a hash table method to search a vertex. In addition, we also make full use of the
adjacency relations between vertices to speed up the search, such as querying 1-ring neighbor vertices.

• Construction of face objects
From the representation model presented above, it is evident that identifying the adjacent mate

face is crucial for constructing a face object. We take the following steps: (1) In the process of
constructing face objects, at first, the mate face pointers in each newly created face object are set as
NULL. (2) When a new face object is constructed each time, check its face adjacent relations along its
vertex order by counterclockwise. If there is an adjacent relation between two faces, their
corresponding mate face pointers are set to point each other. (3) Check borders of non-manifold
meshes. If there are NULL pointers in a face object, the corresponding edges of the face object are
mesh borders. It is necessary to set its mate faces properly with some mapping rules.

Comparison and discussion:
Compared with other data structures, the presented topological data structure has the following
characteristics:

• Much more flexibilities and extensibilities
Object-oriented representation can provide much more flexibilities, extensibilities, and usability for

various mesh applications than the array-based or corner-based data structure. In the presented model,
each mesh face or vertex is described as an instance of the respective geometric entity class. According
to application requirements, users can simply derive their subclasses to create the user-defined mesh
object, which makes it easy to implement hybrid meshes consisting of different types of mesh faces.
As a result, various attributes, such as texture or color attributes, can be easily appended to the face
object. In addition, the mesh instance can be flexibly accessed.

• Much more compact and succinct
The famous half-edge data structure needs more memory footprints. In commonly used half-edge

data structure, such as the Surface_mesh data structure, a half-edge needs 20 bytes; a vertex needs a

http://www.cadconferences.com/

371

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 367-371
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

half-edge; an edge needs two half-edge; and a face needs a half-edge [2],[8]. As a result, for a triangle
mesh with n vertices, the total memory consumption is: 20n + 20×2×3n + 20×2n = 180n bytes. The

array-based compact data structure [1],[4] can reduce the memory footprint of a half-edge to 8 bytes;
but it also consumes memory at least 80 bytes/vertex. If a half-edge is encoded to an unsigned long
integer, the memory footprint will be reduced to 64 bytes/vertex.

• Good time performance
In the presented model, all topological queries are independent of the mesh size. The operation of

querying 1-ring neighborhoods mentioned above can demonstrate the efficiency of accessing mesh
entities. In addition, theoretically, the number of variables in the model can determine the
reconstructing efficiency largely. In the presented model, there are only four variables for topological
relations. Compared with the compact array-based data structure, the presented model doesn’t need to
perform operations of encoding and decoding half-edges. Encoding and decoding operations will take a
few moments.

• Uniformly representing and processing manifold meshes and non-manifold meshes.
Currently, most of existing mesh data structures are incapable of representing and processing non-

manifold meshes well. By defining the CWireEdge class and a few mapping rules for mate faces, the
presented model can uniformly represent and process mesh boundary and non-manifold meshes.

Conclusions:
A large number of triangle mesh applications need a compact topological representation that can
uniformly represent manifold meshes and non-manifold meshes with less memory consumption and
more flexibilities and extensibilities. In this paper, a novel compact face-based topological
representation for triangle meshes is presented. The presented model makes full use of the semantic
relations and implicit information among faces, edges, and vertices. Compared with the general edge-
based data structure, the memory footprint for topology information is reduced. Compared with the
array-based compact data structure, the present model has much more flexibility and extensibility. In
addition, the presented model can uniformly represent and process hybrid meshes, manifold meshes,
mesh boundaries, and non-manifold meshes. Furthermore, a reconstruction experiment for STL format
data has been carried out, which verifies that the presented model is feasible and effective.

Acknowledgements:
This work is supported by the National Science Foundation of China (Grant No. 51775081 and
51375069). The authors thank the anonymous reviewers for their helpful suggestions on this study.

References:
[1] Alumbaugh, T. J.; Jiao, X.: Compact array-based mesh data structures, Proceedings of the 14th

International Meshing Roundtable, Berlin Heidelberg: Springer, 2005.
[2] Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P.; Lévy, B.: Polygon mesh processing, A K Peters,

Natick, Massachusetts, 2010.

[3] Campagna, S.; Kobbelt, L.; Seidel, H.-P.: Directed edges—A scalable representation for triangle

meshes, Journal of Graphics Tools, 3(4), 1998, 1-12. https://doi.org/10.1080/10867651.1998.104
87494

[4] Dyedov, V.; Ray. N.; Einstein, D.; Jiao, X.; Tautges, T. J.: AHF: Array-based half-facet data structure
for mixed-dimensional and non-manifold, Engineering with Computers, 31(3), 2015, 389-404.
https://doi.org/ 10.1007/s00366-014-0378-6

[5] Feito, F. R.; Ogayar, C. J.; Segura, R. J.; Rivero, M. L.: Fast and accurate evaluation of regularized
Boolean operations on triangulated solids, Computer-Aided Design, 45(3), 2013, 705-716.
https://doi.org/10.1016/j.cad.2012.11.004

[6] Hrádek, J.; Kuchar, M.; Skala, V.: Hash functions and triangular mesh reconstruction, Computers
& Geosciences, 29(6), 2003, 741-751. https://doi.org/10.1016/S0098-3004(03)00037-2

[7] Mäntylä, M.: An introduction to solid modeling, Computer Science Press, 1988.
[8] Sieger, D.; Botsch, M.: Design, implementation, and evaluation of the surface mesh data structure,

Proceedings of the 20th International Meshing Roundtable, Berlin Heidelberg: Springer, 2011.
[9] Várady, T.; Martin, R. R; Cox, J.: Reverse engineering of geometric models-an introduction,

Computer-Aided Design, 29(4), 1997, 255-68. https://doi.org/10.1016/S0010-4485(96)00054-1

http://www.cadconferences.com/
https://doi.org/
https://doi.org/10.1016/j.cad.2012.11.004
https://doi.org/10.1016/S0098-3004(03)00037-2
https://doi.org/10.1016/S0010-4485(96)00054-1

