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Introduction:

The desire to utilise 3D Computer-Aided Design (CAD) models to represent components earlier in the
design process is hindered by the need for the supported analysis process to be e�cient, using models
of the appropriate cost and complexity. For instance, during the design phase it could be of interest to
carry out analyses of di�erent versions of the product using simpli�ed FE models. Then, the analyst can
develop progressively more detailed representations of the model if required. However, the CAD models
provided to the analyst may be very complex and idealisation steps are required to make them suitable
for analysis [7, 12]. The main operations for geometry preparation are: i) defeaturing [8], ii) geometry
clean-up [3], iii) partitioning [11], iv) decomposition [9] and v) dimensional reduction [4]. These are used
to create simpli�ed, computationally e�cient versions of the geometry for simulation [1, 5].

Usually, idealising a complex CAD model will require more than one of these operations, and much
research has been devoted to managing and streamlining the process, e.g. [10]. The dimensional reduction
step is at the core of this work. Speci�cally, the automatic creation of a 2D-axisymmetric FE model from
the 3D CAD model of a quasi-axisymmetric component. Such components have an obvious axis about
which much of their geometry is axisymmetric, but include features which are not complete revolutions
around the axis. Some geometry clean-up operations are also required during the dimensional reduction
process.

Main Idea: Geometric recreation

The idealization methodology has been implemented as: i) a software capability for the creation of the
2D-axisymmetric pro�le and ii) a Python script which exploits the Abaqus Scripting Interface to calculate
the shape coe�cient. The overall methodology consists of six steps. The input is a triangular facetted
representation of the CAD geometry. A facetted representation was selected because while it is possible
to analytically compute an analytic description of an analytic shape on a plane, it is not possible to do
this for NURBS geometry which is common in CAD. A Facetted model can be created for all common
engineering geometry types (e.g. NURBS geometry, analytic CAD geometry, meshed geometry and point
clouds). In CAD the facetted representation is created by replacing each of the faces of a model with a
set of triangular facets. The quickest way to achieve this is to export the geometry from the CAD system
in a facetted format. VRML was used in this work but the approach would work equally well with any
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triangular surface mesh/facet. The mesh coarseness should be selected to re�ect the size of the features
in the part, but increasing the number of elements will impact the processing time. The di�erent steps
implemented in the process are reported below with the geometry at di�erent stages shown in Fig.1

Step 1: Projecting face facets circumferentially onto a plane. The axisymmetric model exists on a
plane; consequently, the �rst step in the idealization process is to circumferentially project the facets
representing each face onto a plane (the r − Z plane where r is the radial direction and Z the axial).

Step 2: Classifying faces. Once the facets representing the model faces have been projected onto the
r − Z plane it is necessary to classify them. The classi�cations are:

� Case 1: After the projection, the 3D face becomes a 2D degenerate face of zero area (referred to
as a 'mapping face' in this work). This occurs when the area of each facet representing the face
becomes zero after the projection.

� Case 2: These are faces that include some facets that have non-zero area when projected circum-
ferentially onto the r − Z plane.

Step 3: Identi�cation of mapped edges. The facets identi�ed in step 2 as case 1 are used to de�ne
the axisymmetric pro�le of the part. These projected facets have three collinear vertices. The associated
mapped edges are bounded by the extreme points. The mapped edges are then stored in a list called
SHAPE-EDGES for use in step 5.

Step 4: Identi�cation of silhouettes edges. Silhouette edges de�ne other edges in the axisymmetric
pro�le. Silhouette edges are identi�ed as those bounding adjacent facets whose normals point in opposite
directions after the projection to the r − Z plane. Identi�ed silhouette edges are added to the SHAPE-
EDGES list which now contains all the necessary edges to form the 2D-axisymmetric pro�le.

Step 5: Obtaining a raster representation of the 2D-axisymmetric pro�le. The set of SHAPE-EDGES
is su�cient to de�ne the overall boundaries of the 2D-axisymmetric model. However, at this stage the
shape edges are not topologically connected and do not represent the topology of the 2D-axisymmetric
model. The consequence is that many of the edges will be redundant (i.e. have been projected onto the
same locations).

Rasterization strategies are used to deal with the edge redundancy issue and to generate an appropriate
data representation for topology construction via contour recognition techniques (addressed in step 6).
The rasterization approach consists of discretizing the r − Z plane to a square grid (i.e. a raster formed
by square cells) which the shape edges are mapped to. If a cell in the raster is intersected by one or more
edges, then the cell is stored. In this work Bresenham's line algorithm [2] was used. The 2D-axisymmetric
model pro�le is reduced to a binary structure from which the regions that form the 2D-axisymmetric model
can be extracted.

Step 6: Building the 2D-axisymmetric FE model. The OpenCV image processing library was used
to identify contours in the binary structure resulting from step 5. The contours detected using this
function are stored as arrays of points de�ning polygons. The resultant polygons can be unnecessarily
complex from a FE perspective. To simplify the polygons, the Douglas-Peucker algorithm [6] (function
ApproxPoly in EmguCV) was used. These polygons are then converted into a usable CAD model by
writing them in a speci�c format (e.g. STEP). The automated idealisation result of some simple concepts
are shown in Fig. 2

FE model creation:

The 2D-axisymmetric FE model (Fig.1(g)) is obtained by meshing the CAD model resulting from the
six steps described. In this work the creation of the FE model was automated using the ABAQUS
python API. The main steps in the FE model creation were the creation of an axisymmetric pro�le and
appropriate boundary conditions (e.g. Uy = 0, Rx = 0 andRz = 0, where x is the axial direction and z is
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Fig. 1: (a) Overlapping edges in a 2D-axisymmetric pro�le; (b) Overlapping edges reduced to a set of
unique cells; (c) Contours detected in the binary pro�le; (d) Simpli�ed contours using Douglas-Peucker al-
gorithm; (e) Stitching of the simpli�ed contours; (f) 2D-axisymmetric CAD created; (g) 2D-axisymmetric
FE model

Fig. 2: Automated rebuild of axisymmetric shape

the radial) and the application of 2D axisymmetric elements (e.g. CAX6M) in the di�erent sub-regions
of the model. The conversion of a 3D quasi-axisymmetric model to its equivalent 2D-axisymmetric
version results in a loss of geometric information in the circumferential dimension. In order to ensure the
physical relevance of the 2D-axisymmetric model with respect to the original 3D model this loss must be
compensated. A physically straightforward way to account for this, is to modify the 2D-axisymmetric FE
model with a shape coe�cient applied to the material properties and to the loading. For this purpose,
the 'Volume Fraction' coe�cient (Kv) is de�ned. This coe�cient establishes for each region in the model
the fraction of the volume around the axis of revolution the 3D model actually occupies. This coe�cient
is equal to 1 for an axisymmetric region.

To validate the proposed methodology a rotating blade of tapered pro�le is analysed. The radial
stresses and displacement resultant from both the 3D model (Set-up A), the generated 2D-axisymmetric
model with corrected material properties (Set-up B corr) and the analytical model are compared. The 3D
model, depicted in �gure 3, consists of a shaft with 20 tapered blades occupying 2% of the volume at all
radii, consequently the volume fraction KV is equal to 0.02 for entire non-axisymmetric region. Stresses
and displacements acting along the radial direction caused by a centrifugal body force are evaluated in
this example. It is assumed that the blade is rotating with an angular velocity ω = 250 rad/s. The
analytical expressions are given in Fig.3 (right).

The contour plots of the radial stress for the 3D section and the corrected 2D axisymmetric are
shown in �gure 4 left. From the �gure it is clear that the results obtained using the two approaches are
similar. For a quantitative analysis, 35 points radially distributed along the midline of the blade have
been compared for both models. Their values have been plotted in �gure 4 right and compared with the
analytical solution of the model (green line). Excellent matching is shown. The maximum radial stress
along the midline of the blade is at the interface between the disk and the blade. At this point Abaqus
calculated a stress of 11320 MPa for Set-up A and 11450 MPa for Set-up B. From the interface on, the
radial stress decreases progressively along the length of the blade.

Proceedings of CAD'18, Paris, France, July 9-11, 2018, 327-331
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

http://www.cad-conference.net


330

Analytical solution for cylindrical sector:

σrd = A+
3 + ν

8
ρω2(r21 − r2)

with A the residual stress at the interface
between the blade and the disk

A =
mblade · ω2 · COG

πr21t

Where σ, r, ω have the usual meaning and
t is the thickness of the blade.
Analytical solution for tapered blade
along the midline (r1 ≤ r ≤ r2):

σrb = ρω2

(
r2

3

3r
− r2

3

)
Fig. 3: Left: Shaft with 20 tapered blades uniformly distributed along the circumference; Right: Analyt-
ical solution of the model
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Fig. 4: Left: Stress contour plots; Right: Stress along the radial direction

Discussion:

The automated idealisation process took less than two minutes on a standard desktop workstation (Intel
i7 with 16GB Ram). Factors which impact the process time include:

� The complexity of the component model shape. A more complex component model, with more
faces and of greater curvature, will be represented by a larger number of facets.

� The calculation of Kv, along with the associated revolve and Boolean operations, is required for
each separate quasi-axisymmetric region in the model.

Over the course of this work, the idealisation of even seemingly complex models has required less than 5
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minutes to process. In the process described above, oneKv value is calculated for each quasi-axisymmetric
region in the model. This was �ne for the example model because the tapered blade pro�le meant that
the Kv value was constant across the blade, and the calculate Kv was accurate at all positions. Should
the thickness of the geometric features in the axisymmetric regions not exhibit this property, then the Kv

value calculated will be the average for the region. Should the average not be su�cient then the quasi-
axisymmetric pro�les in the 2D model can be divided into smaller regions. This will produce smaller
sections, each with Kv averaged for the region they cover. At the highest level of granularity, the quasi-
axisymmetric regions can be meshed in the 2D model, and each element teared as a separate region. This
will provide the highest possible accuracy, but there will be a cost associated with its computation.
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