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Introduction: 
Functionally graded material or FGM are microscopically non-homogeneous composite materials, with 
material properties varying continuously and smoothly from one end to another [13]. FGM materials 
offer optimization for the design of components in terms of material usage and performance, and thus  
have found special applications in diverse fields including aerospace, defence, nuclear, as well as 
biomedical applications and analysis of FGM structures [4], [6], [13]. 

Extensive work is available in the area of mesh generation algorithms and handling complex 
geometric objects but only few papers are available on meshing based on varying material property. 
Some representative works [2], [9] and [10] are essentially geometry based meshing methods with little 
consideration for the material gradient. The works of [4] and [8] are the representative works for 
meshing strategies used for FE analysis of FGMs by approximating the FGMs as piecewise homogeneous 
materials and then messing each region by conventional meshing strategies for homogeneous objects.  

FE analysis of heterogeneous object is relatively current topic in research. Some representative 
works such as [11] and [12] analyse a FGM object by taking some meshing strategy that is based on 
material gradient.  Most of the works stop at adopting some criteria or the other related meshing the 
object. No study is available for checking the effect of these criterions on the analysis of the object. 
Present work uses material gradient as one of the parameter to create variable mesh and studies its 
effect on the convergence characteristics of a FEM analysis procedure. 

Materials and Methods: 
Let us consider a bar of length L, and the area of cross section A as shown in Fig. 1. One end of the bar 
is fixed and a tensile load of P is applied at another end. The bar is composed of two materials, with the 
elastic properties assumed to be E1 and E2 respectively and (E2 > E1) at the end. It is assumed that the 
variation of modulus of elasticity E(X) at a distance X from the fixed end within the bar is governed by 
a power law function as follows: 

                                                                           𝐸(𝑋) = 𝐸1 + (𝐸2 − 𝐸1) (
𝑋

𝐿
)

𝑛

                                                                                       (1) 

Let, 𝑥 =
𝑋

𝐿
, 𝛾𝑚𝑎𝑥 =

𝐸2

𝐸1
,   𝛾(𝑥) =

𝐸(𝑋)

𝐸1
                       

Where x is termed as non dimensional length and γ as non-dimensional modulus of elasticity. Thus Eqn. 
(1) reduces to: 
                                                                            𝛾(𝑥) = 1 + (𝛾𝑚𝑎𝑥 − 1)𝑥𝑛                                                                                               (2) 

 
Where n is any real positive number called power index for material variation. For all of the simulation 
it is presumed that the load P is 1unit and the area of cross section A is also 1 unit. 
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Fig. 1: The Basic Configuration. 

Meshing Style: 
Most of the meshing style available so far take FGM material as a combination of piecewise homogeneous 
region and then meshing each region separately. For homogeneous objects, the mesh size is dependent 
primarily on the geometry of the object. It is presumed that for FGM, the appropriate mesh size is 
dependent on the material property gradient. The material property considered here is the modulus of 
elasticity of the object, i.e.  E(X). In this context, the following definitions are introduced: 
 
Geometric Mesh 
Meshing strategy based on only the geometry of the component with no consideration for material 
property gradient is termed as geometric mesh. The elements thus formed are referred as geometric 
element. 

Assume that the FGM rod under consideration is to be divided into N elements, based on geometric 
mesh. Since the area of cross section the rod is constant, the non-dimensional length of each element 
will be 1/N.  

 
Finite Element Analysis with Geometric Element 
A standard finite element formulation was done and displacement u, at the load end of the bar was 
checked for convergence study.  
 
Graded Mesh 
In graded mesh, the element size depends on the equal increment / decrement of the material property 
value across each of the elements. 

For N number of elements, and graded mesh, the element size will be determined by equal increment 
in modulus of elasticity (E) along length of the rod.  Each node will have an increment of (E2 − E1) N⁄ . So 
the nodes will be placed at the locations of successive increments of (E2 − E1) N ⁄ in the value of E. Let 
the value of E at a node at a distance X is E(X). The non-dimensional distance x corresponding to non-
dimensional modulus of elasticity, can be evaluated from Eqn. (2) as follows: 

                                                                               𝑥 = (
𝛾(𝑥) − 1

𝛾𝑚𝑎𝑥 − 1
)

1

𝑛

                                                                                                          (3) 

 
Obliviously, this style of meshing strategy will give unequal element length for the value of n≠1. 

FE Analysis with Graded Element: 
The variation in elastic property E with an element can be handled in different ways. The conventional 
method is to assume the value of E constant within an element as shown in Fig. 2 and the value of E is 
approximated as the average of the nodal values. So for element e, the modulus of elasticity E (e) is: 
 

                                                                             𝐸(𝑒) =
𝐸𝑋1

+ 𝐸𝑋2

2
                                                                                                           (4) 
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Fig. 2: Constant E, Average Element. 
 

The element with averaged E value is termed here as average element. The average element meshing 
strategy is equivalent to dividing the region into number of presumed homogeneous regions and then 
analysing each region as a homogeneous region. 

Another method, which may look more attractive and accurate, is taking into account the variation 
of E across the element, E(X) into consideration while analysing the model. This method we are terming 
as “graded element” method. In this case the elemental stiffness matrix ⌈k⌉e is expressed as: 

                                                                  [𝑘]𝑒 = ∫ [𝐵]𝑇
𝑋2

𝑋1

[𝐷][𝐵]𝐴 𝑑𝑋                                                                                                      (5) 

Where [𝐵] is strain displacement matrix, D=E(x) and A is the area of cross-section of the element. 
Elemental Equations are assembled to get global properties of structure. The global equation can be 
presented as: 
                                                                                           [𝐾][𝛿] = 𝑃                                                                                                           (6) 

 
Where [K] is the global stiffness matrix [δ] is the global displacement vector and [P] is the global load 
vector. Thus the displacement at every node can be computed.  
 
Closed form Solution of the Problem 
For average element solution, the close form solution comparison was taken from literature [14]. For 
graded element, the closed form solution of Eqn. (6) was found using a symbolic computation tool.  

Comparison of Results for Average Element with Graded Element: 
For constant γmax the numerical simulation to find out the displacement at the load end was done. The 
variables were the power law index n, and number of elements.  
 
Comparison of Results for Average Element with Graded Element with Equal Element Size 
The first numerical simulation is done to understand the effect of the graded element vis a vis the 
average element with equal mesh size. The difference between exact value of displacement at the free 
end and from the numerical simulation is evaluated for different values of the n. It was found that for 
same number of elements, graded element has superior convergence characteristics. The error increases 
as n deviates from 1 on either direction.  
 
Comparison of Results for Average Element with Graded Element with Unequal Element Size 
The second simulation is done to understand the effect of changing the mesh size in accordance with 
the material based graded meshing approach described earlier. For comparison purpose the mesh size 
obtained for material based graded meshing is taken equal to that for the average element analysis. The 
results indicate that for the same mesh size, the graded element approach is superior to average element 
approach, so taking graded element (that is varying material property within an element) is advantageous 
for convergence. It also indicates that as n deviates from the value 1, the material based graded meshing 
gives faster convergence. So for further studies, material based graded mesh approach is adopted as a 
better method for convergence. 

Comparison of the Convergence Characteristic of ‘Material Mesh’ Element with Geometric Mesh (Equal 
Length Element): 
 
Convergence Comparison for Constant  𝛾𝑚𝑎𝑥 
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For constant γmax , for example ( γmax =2), the convergence of the FE analysis was studied by changing the 
power varying n. It is interesting to note that geometrical mesh is effective for n>1 whereas material 
mesh was effective for 0<n<1. The reason for this effect can be attributed to the effect of different mesh 
size and different γmax values on the convergence. So to further analyse the cause, it is considered 
necessary to see the effect of γmax variation on the convergence characteristics. 
 
Effect of Variation of  𝛾𝑚𝑎𝑥 
By varying, 𝛾𝑚𝑎𝑥 from 1 to 100, numerical simulations were conducted. The variables were different type 
of meshing techniques (geometric mesh and material mesh), both of the analysis techniques (average 
element and graded element) and the power index n.  It was evident from the results that, for different 
γmax ratios, the results obtained in both cases for 1<n<5 and 0<n<1 have the same pattern as we have 
indicated in earlier sections. However, this analysis gives us a direction that probably meshing the 
element with the same power 'n' needs to be revisited. Thus an effort was done to take a different index 
for meshing than n. 
 

Taking Different Power Index for Material Meshing: 
For creating mesh, a power ‘m’ that in general is different from the power index n is used to create 
material mesh. Keeping γmax constant, for the same value of power index n, the convergence was tested 
by varying m. Simulations were done by changing γmax  and repeating the procedure again. Interestingly, 
for each combination of γmax and n, there is a value of the index m for which the convergence is fastest. 
The value of index ‘m’ for the fastest convergence is termed as mopt. 

Similar numerical study is done for varying γmax. It was interesting to note the relationship between 
mopt, and index n, is fairly linear as shown in Fig. 4. It shows a relationship between material n and mopt 

for different values of γmax. The nature of the graph is linear for n>1 and becomes non linear for large 
γmax in the range of 0<n<1 indicates in Fig. 3 (for γmax = 100). For n>1, the relationship between mopt and 
n can be expressed as: 
                                                                      𝑚𝑜𝑝𝑡 = 0.52𝑛 + 0.32                                                                                                           (7) 

 

 
 

Fig. 3: Actual Powers used for Defining FGMs (n) versus Power used for Mesh Creation (mopt) for Gradient 
Mesh Generation  γmax = 100: (a) 0<n< 5, (b) 0<n< 1, (c) 1<n<5. 

Results using Optimum Value of m (mopt) for Meshing: 
To see the effectiveness of this approach, for further analysis, mopt   is taken the index for meshing for 
different values of n. The result for different values of n and γmax = 2 are shown in Fig. 5. All the results 
indicate that the convergence using material mesh is superior for all the cases. It was also shows that 
the convergence is now not affected by the power index n. The interesting point to note is that the value 
of mopt is fairly independent of the value of influence of  γmax . 
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Fig. 4: Relationship between Powers used for Defining FGMs (n) versus Power used for Mesh Creation 
(mopt) for Gradient Mesh Generation. 

Discussion: 
The goal of this study was to study the effect of the material based meshing on convergence of FE 
analysis results. Our study clearly indicate the superiority of the material based meshing vis a vis 
conventional meshing with mopt as a basis for meshing, the number of element for same acceptable error 
can be reduced to more than 50% in some cases, which is of huge computational advantage. 

Conclusion: 
Based on the simulation-results it can be concluded that material based graded element where the 
element size is dependent on the power ‘n’ that defines material property gives faster convergence. It is 
also concluded that for material based graded meshing, it is recommended to use mopt for meshing in 
place of power n, and taking mopt as power for meshing gives fastest convergence. A linear relationship 
is also developed for finding out the optimum power index for meshing from the power index n. 
 

 
 

Fig. 5: Displacement Results between Geometrical Mesh, Material Based Gradient Mesh, Meshing Based 
on the mopt  for n=2 and for n=0.2 (From left to right). 
 
This work was done for one dimensional stress analysis under tension only. Work is in progress to 
extend this philosophy for higher dimensional stress analysis and for different type of load conditions. 
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