
21

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Efficient Voxelization-Based Construction of Finite Element Meshes Originated from Micro-
Computed Tomography Data

Authors:
Mohammadreza Faieghi, mfaieghi@uwo.ca, Western University, London, ON, Canada
Nikolas Knowles, nknowle@uwo.ca, Western University, London, ON, Canada
O. Remus Tutunea-Fatan, rtutunea@eng.uwo.ca, Western University, London, ON, Canada
Louis Ferreira, louis.ferreira@sjhc.london.on.ca, Western University, London, ON, Canana

Keywords:
Micro Finite Element Model (μFEM), Micro Computed Tomography (μCT), Hexahedral Mesh, Cartesian
Mesh, Voxelization

DOI: 10.14733/cadconfP.2018.21-25

Introduction:
Micro-finite element models play a critical role in microscale structural analysis. These models are
generally obtained through processing μ-CT data [7] that encompasses images with resolutions as high
as few microns per pixel. The 3D geometry of the scanned sample can be reconstructed through
appropriate segmentation operations that are to be performed on the μ-CT images yielded through
scanning. This 3D representation of the sample becomes then the basis of the finite-element volumetric
meshes to be further integrated in the subsequent μ-FEMs generated for structural analysis purposes
[5]. According to the fundamentals of the finite element methods, hexahedral elements are more
computationally efficient than their tetrahedral counterparts [3], such that their preferential use is
desirable. However, the tools that are presently available to generate hexahedral μ-FE meshes either
require considerable computing time and power [6] or are limited to rather simple geometries [1].

In addition, the development of an algorithm capable to efficiently discretize/mesh μ-CT data poses
a number of challenges that are primarily derived from the size of the μ-CT data often consisting of tens
of millions of elements/voxels. As it can be inferred, the processing of this amount of data is a time-
consuming operation even if performed on a powerful hardware. Moreover, the available tools rely on
unoptimized codes that are subjected to random crashes caused by poor/obsolete graphic memory
management routines. Robust number representation techniques are mandatory in this context since
the size of the numbers to be handled exacerbates all known flaws associated with the commonly
employed floating point format.

Along these lines, the present study represents an attempt to propose a computationally efficient
algorithm capable to generate hexahedral meshes from μ-CT data. The core idea of the algorithm is that
since μ-CT data consist of uniform voxels, it could be stored in a uniform 3D grid. If this grid is
determined/known, then fast and robust integer operations can be used to manage the computations to
be performed on grid coordinates. Following this, since the high-resolution μ-CT voxels is considered
accurate enough for μ-FEMs, the algorithm can be restricted to output only cubes/voxels as a simple
hexahedral element [3], and this should result in significant reductions of the computational time.
Another prominent feature of the algorithm is related to the use of hashing techniques for indexing of
the nodes and materials in the FEM [8]. The implementation of the hashing techniques allows the search
operations to be performed in a constant time and this in turn reduces the time complexity of the
algorithm to O(n) thus making it extremely efficient when dealing with large data sets. As a result, the

http://www.cadconferences.com/
mailto:mfaieghi@uwo.ca
mailto:nknowle@uwo.ca
mailto:rtutunea@eng.uwo.ca
mailto:louis.ferreira@sjhc.london.on.ca

22

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

algorithm will end up being remarkably fast even when running on a hardware characterized by average
specifications.

Implementation:
Fig.1 outlines the major steps involved in meshing the μ-CT data. The input to the algorithm is a text file

enclosing the center coordinates
3c along with intensity gray-values values r for each of the μ-

CT voxels obtained after the necessary segmentation and filtering operations to be followed by a 6-

connectivity check. The algorithm starts with the import of the (,)rc pairs from the text file.

Fig. 1: Overview of the voxelization-based generation of μ-FE meshes.

Since the voxel size
3s is a priori known from the μ-CT resolution, the determination of the minimum

and maximum of the center coordinates during file stream enables the inference of a uniform voxel grid

 whose dimension
3d is given by the element-wise calculation of ()max min−c c s . The maximum

number of voxels to be held by the grid is therefore
max x y zn d d d= . Subsequently, the algorithm proceeds

with the dynamic allocation of a linear array of integers, hereafter called density array characterized by

an maxn length. The density array stores the intensity values for each voxel in a certain location. This

array is populated in such a way that the memory location can be used to identify the coordinates of

the voxel corresponding to that element. Specifically, let 3(, ,)x y z ranging from
3o to

(1, 1, 1)x y zd d d , be the coordinates of a voxel . Then, the i -th element of the density array

corresponds to a voxel (, ,)x y z whose grid coordinates are expressed by:

x y

z i d d ,
x y x

y i zd d d and
x y x

x i zd d yd . (8.1)

Conversely, a voxel (, ,)x y z corresponds to the i -th element number in the density array, where

 x x yi x yd zd d . (8.2)

Note that with the above formulation, the center coordinates of a voxel (, ,)x y z is determined by:

 min , (, ,)x y zc c s , (8.3)

where , denotes the dot product. One of the major advantages of representing the μ-CT data in a

grid is that the coordinate transformation can be handled by Eq. (8.1) and Eq. (8.2). These equations

involve only integer-based calculations whereas the direct use of the -CT coordinates would set the
need for floating-point operations that – given the number of decimal places in μ-CT data – is expected
to be error-prone as well as slow.

If changes in voxel resolution are needed, the grid constructed in the previous step is to be passed
to the so-called Resize Voxels routine that creates a new grid by placing its minimum corner at

min 2c s . If the new voxel size is 1. ,k k− = s s , then the dimension of the new grid will be

.k =d d . Then, by allocating a new density array of
x y zd d d length, the algorithm can move forward by

iterating through the elements whose intensity values are correspondingly assigned. This is the case of

Create
Grid

Create
Hexahedral

Node
Indexing

Calculate
Material

Material
Indexing

Output FEM

Resize
Voxels

Material
Binning

Read
μ-CT data

http://www.cadconferences.com/

23

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

the dividing voxels for which the intensity of the new voxels is inherited from the parent μ-CT voxel.

Note that k ensures that s is a divisor of s and this represents a prerequisite for volume

conservation. In case of voxel merging, s can be a multiple of s and therefore the intensity of the new

voxels can be obtained by averaging the intensities of μ-CT voxels that are present in the same location.

Next, the Create Hexahedral phase receives grid information, iterates over the density array, and
creates eight nodes with respect to the center coordinate of the voxels that are occupied in the grid.
These nodes must follow the particular order illustrated in Fig. 2. If the number of occupied voxels is

represented by n , the length of the output array will be 8n , in which the elements from 8i to 8 7i +

correspond to a single voxel. At this phase, the obtained array constitutes a complete representation of
the FE mesh. However, the array also includes duplicates and thereby must be separated into a unique
nodes coordinates array and an indices array enclosing the topology of the geometry. This is the task of
the Node Indexing phase.

Fig. 2: Topology of the hexahedral element.

One simple way to remove duplicates is to continuously loop over the array while looking for identical
instances of the element being scrutinized. However, since the average time complexity for array
searching operations is O(n), the worst-case time complexity associated with this procedure is O(n2). This
number is clearly inefficient in case of μ-CT data encompassing millions of voxels. To circumvent this,
the developed algorithm relies on a more efficient hash mapping technique. In essence, hash map is a
data container that stores every node coordinates paired with a key value. These key values are
computed by a hash function assigned to the hash map. Despite the linear array that stores the nodes
sequentially, the hash map places the nodes according to the keys. This reduces the time complexity
associated with the search for an element in the hash map to O(1). By employing this idea, Node Indexing
iterates over the array of the nodes and looks up duplicate nodes by means of the hash table. This
reduces the time complexity of the process to O(n), leading to a much higher efficiency compared the
nested loop approach (Tab. 1). As such, the geometry of the hexahedral elements is fully characterized
by the two arrays that have been generated at the end of the current processing phase.

Number of μ-CT
voxels

Total number of
nodes

Number of
duplicate nodes

Runtime (ms)

Nested loops Hash mapping

500 4,000 3,147 2.696 0.212

1,000 8,000 7,167 10.476 0.435

5,000 40,000 33,735 162.167 1.795

15,000 120,000 101,123 15,92.704 6.175

40,000 320,000 270,113 10,986.821 15.416

Tab. 1: Comparative assessment of hash mapping efficiency.

n1 2n

n3
n4

n5 n6

n7n8

()

()

()

()

1

2

3

4

1, 1, 1 , 0.5*

1, 1, 1 , 0.5*

1, 1, 1 , 0.5*

1, 1, 1 , 0.5*

= + − − +

= + + − +

= + + − −

= + − − −

n c s

n c s

n c s

n c s

()

()

()

()

5

6

7

8

1, 1, 1 , 0.5*

1, 1, 1 , 0.5*

1, 1, 1 , 0.5*

1, 1, 1 , 0.5*

= + − + +

= + + + +

= + + + −

= + − + −

n c s

n c s

n c s

n c s

y
x

z

http://www.cadconferences.com/

24

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

Once duplicates are removed, Calculate Material starts to assign material values to the hexahedral

elements. This subroutine consists of a user-defined function ()f that correlates the intensity value of

each μ-CT voxel r to a material value ()m f r= . However, to reduce the complexity of the FEM, it is

sometimes desirable to reduce the number of materials generated through this technique. To this end,
materials of different Hounsfield intensities/densities are categorized in bins with a user-selected width
within the Material Binning step. Once this is completed, Material Indexing pairs voxel’s index and its
material values and then pools these pairs by means of a hash map. By iterating over the pool, it is
possible to group all the voxels enclosing the same material value to be then categorized in distinct
element sets. The element sets and their corresponding material values are then combined with the
output of the Node Indexing phase in order to build the final μ-FE mesh.

Results:
The performance the developed C++11 algorithm was assessed on sample μ-CT data consisting of a
trabecular bone specimen and a synthetic bone model (cellular foam), both scanned at an isotropic 32μm
voxel size, as well as a cadaveric glenoid specimen scanned at an isotropic 64μm voxel size. To evaluate
the performance of the algorithm for clinical CT data, a human scapula model scanned at a voxel size
of (0.472656mm, 0.472656mm, 1mm) was also considered. Voxel resolution was kept constant in all
test cases. Material properties of the large samples (cellular foam and cadaveric glenoid) were binned
with a bucket size of 10. The computing time of each step was measured with microsecond resolution
by means of the chrono timer available in C++11 standard library [4]. The hardware used in all tests
included a common Core-i7 6700K CPU equipped with 16 GB RAM.

Fig. 3 depicts the resulting μ-FE mesh for the analyzed samples, while the corresponding computing
time is presented in Tab. 2. To eliminate confounding errors, I/O times were not considered. The results
indicate that a model as complex as the glenoid (36.2M voxels) required only 55.16 s for mesh
generation, whereas a scapula scanned at clinical CT resolution needed less than a second. To determine
the functional relationship between model size and algorithm runtime, various decimations of the
glenoid size were tested and the data plotted in Fig. 4 suggests that a linearithmic dependence between
the model size and mesh generation time exists for datasets larger than 104.5 voxels. The algorithm
seems to exhibit an O(1) behavior for small datasets and this might be a consequence of the significant
initialization overhead that is present.

Phase

Runtime (ms)

Trabecular
specimen

(1.7M voxels)

Cellular foam
(12.4M voxels)

Glenoid
(36.2M voxels)

Scapula
(558K voxels)

Create Voxel Grid 25.057 189.135 641.875 17.358

Create Hexahedral 196.085 1,383.37 4631.19 69.359

Nodes Indexing 1,354.804 12,888.198 37,013.259 343.325

Calculate Material 15.743 147.407 500.394 9.335

Material Binning N/A 35.414 97.415 N/A

Material Indexing 387.306 3,301.615 12,279.429 109.241

Sum 1,978.995 17,945.139 55,163.562 548.798

Tab. 2: Runtime for different phases of the voxelization-based -FE generation process.

Conclusion:
The present study proposed a fast algorithm capable to generate hexahedral μ-FE meshes using data

obtained from -CT scans. The results presented imply that the projection of CT voxels into a uniform
3D grid coupled with the use of the hash mapping techniques for searching and indexing can
significantly decrease the mesh generation time as long as eight-node brick elements are used. The tests
performed revealed that the time complexity of the algorithm is O(n) and that it can mesh a domain
with 36.2M voxels in 55.16 seconds. Future developments will be focused on adaptively-sized voxels
that are capable to further enhance the computational performance of the proposed technique. However,

http://www.cadconferences.com/

25

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25
© 2018 CAD Solutions, LLC, http://www.cad-conference.net

these extensions of the current method are far from being trivial, primarily due to the hanging nodes to
be present between adjacent but differently-sized hexahedrons.

(a) (b) (c) (d)

Fig. 3 Generated -FE mesh for: (a) trabecular, (b) cellular foam, (c) glenoid, and (d) scapula samples.

Fig. 4: Relationship between model size and -FE generation time.

Acknowledgement:
The work presented in this study was supported in part by the Natural Sciences and Engineering Research
Council (NSERC) of Canada and Canadian Institutes of Health Research (CIHR) under the framework of
the Collaborative Health Research Program (CHRP).

References:
[1] Abaqus FEA, http://www.simulia.com/
[2] Bayraktar, H. H.: Nonlinear micro finite element analysis of human trabecular bone, Circle 141-

Abaqus Inc., 2004, 22-25.
[3] Ericson, C.: Real-time collision detection. CRC Press; 2004.
[4] Josuttis, N. M: The C++ standard library: a tutorial and reference. Addison-Wesley: 2012.
[5] Lacroix, D.; Chateau, A.; Ginebra, M. P.; Planell, J. A: Micro-finite element models of bone tissue-

engineering scaffolds, Biomaterials, 27(30), 2006, 5326-5334.
https://doi.org/10.1016/j.biomaterials.2006.06.009

[6] Simpleware FE Module, https://www.simpleware.com/software/fe-module/
[7] Verdonschot, N.; Fennis, W. M.; Kuijs, R. H.; Stolk, J.; Kreulen, C. M.; Creugers, N. H: Generation of

3-D finite element models of restored human teeth using micro-CT techniques, International
Journal of Prosthodontics, 14(4), 2001, 310-315.

[8] Wang, E.; Nelson, T.; Rauch, R: Back to elements-tetrahedra vs. hexahedra. In: Proceedings of the
2004 International ANSYS Conference 2004, Pennsylvania, USA.

http://www.cadconferences.com/
http://www.simulia.com/
https://doi.org/10.1016/j.biomaterials.2006.06.009
https://www.simpleware.com/software/fe-module/

