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Introduction: 
Micro-finite element models play a critical role in microscale structural analysis. These models are 
generally obtained through processing μ-CT data [7] that encompasses images with resolutions as high 
as few microns per pixel. The 3D geometry of the scanned sample can be reconstructed through 
appropriate segmentation operations that are to be performed on the μ-CT images yielded through 
scanning. This 3D representation of the sample becomes then the basis of the finite-element volumetric 
meshes to be further integrated in the subsequent μ-FEMs generated for structural analysis purposes 
[5]. According to the fundamentals of the finite element methods, hexahedral elements are more 
computationally efficient than their tetrahedral counterparts [3], such that their preferential use is 
desirable. However, the tools that are presently available to generate hexahedral μ-FE meshes either 
require considerable computing time and power [6] or are limited to rather simple geometries [1].  

In addition, the development of an algorithm capable to efficiently discretize/mesh μ-CT data poses 
a number of challenges that are primarily derived from the size of the μ-CT data often consisting of tens 
of millions of elements/voxels. As it can be inferred, the processing of this amount of data is a time-
consuming operation even if performed on a powerful hardware. Moreover, the available tools rely on 
unoptimized codes that are subjected to random crashes caused by poor/obsolete graphic memory 
management routines. Robust number representation techniques are mandatory in this context since 
the size of the numbers to be handled exacerbates all known flaws associated with the commonly 
employed floating point format.  

Along these lines, the present study represents an attempt to propose a computationally efficient 
algorithm capable to generate hexahedral meshes from μ-CT data. The core idea of the algorithm is that 
since μ-CT data consist of uniform voxels, it could be stored in a uniform 3D grid. If this grid is 
determined/known, then fast and robust integer operations can be used to manage the computations to 
be performed on grid coordinates. Following this, since the high-resolution μ-CT voxels is considered 
accurate enough for μ-FEMs, the algorithm can be restricted to output only cubes/voxels as a simple 
hexahedral element [3], and this should result in significant reductions of the computational time. 
Another prominent feature of the algorithm is related to the use of hashing techniques for indexing of 
the nodes and materials in the FEM [8]. The implementation of the hashing techniques allows the search 
operations to be performed in a constant time and this in turn reduces the time complexity of the 
algorithm to O(n) thus making it extremely efficient when dealing with large data sets. As a result, the 
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algorithm will end up being remarkably fast even when running on a hardware characterized by average 
specifications. 

Implementation: 
Fig.1 outlines the major steps involved in meshing the μ-CT data. The input to the algorithm is a text file 

enclosing the center coordinates 
3c  along with intensity gray-values values r  for each of the μ-

CT voxels obtained after the necessary segmentation and filtering operations to be followed by a 6-

connectivity check. The algorithm starts with the import of the ( , )rc  pairs from the text file. 

 

 
 

Fig. 1:  Overview of the voxelization-based generation of μ-FE meshes. 
 

Since the voxel size 
3s  is a priori known from the μ-CT resolution, the determination of the minimum 

and maximum of the center coordinates during file stream enables the inference of a uniform voxel grid 

 whose dimension 
3d  is given by the element-wise calculation of ( )max min−c c s . The maximum 

number of voxels to be held by the grid is therefore 
max x y zn d d d= . Subsequently, the algorithm proceeds 

with the dynamic allocation of a linear array of integers, hereafter called density array characterized by 

an maxn  length. The density array stores the intensity values for each voxel in a certain location. This 

array is populated in such a way that the memory location can be used to identify the coordinates of 

the voxel corresponding to that element. Specifically, let 3( , , )x y z  ranging from 
3o  to 

( 1, 1, 1)x y zd d d , be the coordinates of a voxel . Then, the i -th element of the density array 

corresponds to a voxel ( , , )x y z  whose grid coordinates are expressed by: 

 
x y

z i d d , 
x y x

y i zd d d  and 
x y x

x i zd d yd . (8.1) 

Conversely, a voxel ( , , )x y z  corresponds to the i -th element number in the density array, where 

 x x yi x yd zd d . (8.2) 

Note that with the above formulation, the center coordinates of a voxel ( , , )x y z  is determined by: 

 min , ( , , )x y zc c s , (8.3) 

where ,  denotes the dot product. One of the major advantages of representing the μ-CT data in a 

grid is that the coordinate transformation can be handled by Eq. (8.1) and Eq. (8.2). These equations 

involve only integer-based calculations whereas the direct use of the -CT coordinates would set the 
need for floating-point operations that – given the number of decimal places in μ-CT data – is expected 
to be error-prone as well as slow. 

If changes in voxel resolution are needed, the grid constructed in the previous step is to be passed 
to the so-called Resize Voxels routine that creates a new grid by placing its minimum corner at  

min 2c s . If the new voxel size is 1. ,k k− = s s , then the dimension of the new grid will be  

.k =d d . Then, by allocating a new density array of 
x y zd d d    length, the algorithm can move forward by 

iterating through the elements whose intensity values are correspondingly assigned. This is the case of 

Create 
Grid

Create 
Hexahedral

Node
Indexing

Calculate 
Material

Material
Indexing

Output FEM

Resize 
Voxels

Material
Binning

Read 
μ-CT data

http://www.cadconferences.com/


23 
 

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25 
© 2018 CAD Solutions, LLC, http://www.cad-conference.net 

 
 
 

the dividing voxels for which the intensity of the new voxels is inherited from the parent μ-CT voxel. 

Note that k ensures that s  is a divisor of s  and this represents a prerequisite for volume 

conservation. In case of voxel merging, s  can be a multiple of s  and therefore the intensity of the new 

voxels can be obtained by averaging the intensities of μ-CT voxels that are present in the same location. 

Next, the Create Hexahedral phase receives grid information, iterates over the density array, and 
creates eight nodes with respect to the center coordinate of the voxels that are occupied in the grid. 
These nodes must follow the particular order illustrated in Fig. 2. If the number of occupied voxels is 

represented by n , the length of the output array will be 8n , in which the elements from 8i  to 8 7i +  

correspond to a single voxel. At this phase, the obtained array constitutes a complete representation of 
the FE mesh. However, the array also includes duplicates and thereby must be separated into a unique 
nodes coordinates array and an indices array enclosing the topology of the geometry. This is the task of 
the Node Indexing phase. 

 

 
 

Fig. 2: Topology of the hexahedral element. 
 

One simple way to remove duplicates is to continuously loop over the array while looking for identical 
instances of the element being scrutinized. However, since the average time complexity for array 
searching operations is O(n), the worst-case time complexity associated with this procedure is O(n2). This 
number is clearly inefficient in case of μ-CT data encompassing millions of voxels. To circumvent this, 
the developed algorithm relies on a more efficient hash mapping technique. In essence, hash map is a 
data container that stores every node coordinates paired with a key value. These key values are 
computed by a hash function assigned to the hash map. Despite the linear array that stores the nodes 
sequentially, the hash map places the nodes according to the keys. This reduces the time complexity 
associated with the search for an element in the hash map to O(1). By employing this idea, Node Indexing 
iterates over the array of the nodes and looks up duplicate nodes by means of the hash table.  This 
reduces the time complexity of the process to O(n), leading to a much higher efficiency compared the 
nested loop approach (Tab. 1). As such, the geometry of the hexahedral elements is fully characterized 
by the two arrays that have been generated at the end of the current processing phase.  

 

Number of μ-CT 
voxels 

Total number of 
nodes 

Number of 
duplicate nodes 

Runtime (ms) 

Nested loops Hash mapping 

500 4,000 3,147 2.696 0.212 

1,000 8,000 7,167 10.476 0.435 

5,000 40,000 33,735 162.167 1.795 

15,000 120,000 101,123 15,92.704 6.175 

40,000 320,000 270,113 10,986.821 15.416 

 
Tab. 1: Comparative assessment of hash mapping efficiency. 
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Once duplicates are removed, Calculate Material starts to assign material values to the hexahedral 

elements. This subroutine consists of a user-defined function ( )f  that correlates the intensity value of 

each μ-CT voxel r  to a material value ( )m f r= . However, to reduce the complexity of the FEM, it is 

sometimes desirable to reduce the number of materials generated through this technique. To this end, 
materials of different Hounsfield intensities/densities are categorized in bins with a user-selected width 
within the Material Binning step. Once this is completed, Material Indexing pairs voxel’s index and its 
material values and then pools these pairs by means of a hash map. By iterating over the pool, it is 
possible to group all the voxels enclosing the same material value to be then categorized in distinct 
element sets. The element sets and their corresponding material values are then combined with the 
output of the Node Indexing phase in order to build the final μ-FE mesh.  

Results: 
The performance the developed C++11 algorithm was assessed on sample μ-CT data consisting of a 
trabecular bone specimen and a synthetic bone model (cellular foam), both scanned at an isotropic 32μm 
voxel size, as well as a cadaveric glenoid specimen scanned at an isotropic 64μm voxel size. To evaluate 
the performance of the algorithm for clinical CT data, a human scapula model scanned at a voxel size 
of (0.472656mm, 0.472656mm, 1mm) was also considered. Voxel resolution was kept constant in all 
test cases. Material properties of the large samples (cellular foam and cadaveric glenoid) were binned 
with a bucket size of 10. The computing time of each step was measured with microsecond resolution 
by means of the chrono timer available in C++11 standard library [4]. The hardware used in all tests 
included a common Core-i7 6700K CPU equipped with 16 GB RAM.  

Fig. 3 depicts the resulting μ-FE mesh for the analyzed samples, while the corresponding computing 
time is presented in Tab. 2. To eliminate confounding errors, I/O times were not considered. The results 
indicate that a model as complex as the glenoid (36.2M voxels) required only 55.16 s for mesh 
generation, whereas a scapula scanned at clinical CT resolution needed less than a second. To determine 
the functional relationship between model size and algorithm runtime, various decimations of the 
glenoid size were tested and the data plotted in Fig. 4 suggests that a linearithmic dependence between 
the model size and mesh generation time exists for datasets larger than 104.5 voxels. The algorithm 
seems to exhibit an O(1) behavior for small datasets and this might be a  consequence of the significant 
initialization overhead that is present.  

 

Phase 

Runtime (ms) 

Trabecular 
specimen  

(1.7M voxels) 

Cellular foam 
(12.4M voxels) 

Glenoid 
(36.2M voxels) 

Scapula 
(558K voxels) 

Create Voxel Grid 25.057 189.135 641.875 17.358 

Create Hexahedral 196.085 1,383.37 4631.19 69.359 

Nodes Indexing 1,354.804 12,888.198 37,013.259 343.325 

Calculate Material 15.743 147.407 500.394 9.335 

Material Binning N/A 35.414 97.415 N/A 

Material Indexing 387.306 3,301.615 12,279.429 109.241 

Sum 1,978.995 17,945.139 55,163.562 548.798 

 

Tab. 2: Runtime for different phases of the voxelization-based -FE generation process. 

Conclusion: 
The present study proposed a fast algorithm capable to generate hexahedral μ-FE meshes using data 

obtained from -CT scans. The results presented imply that the projection of CT voxels into a uniform 
3D grid coupled with the use of the hash mapping techniques for searching and indexing can 
significantly decrease the mesh generation time as long as eight-node brick elements are used. The tests 
performed revealed that the time complexity of the algorithm is O(n) and that it can mesh a domain 
with 36.2M voxels in 55.16 seconds. Future developments will be focused on adaptively-sized voxels 
that are capable to further enhance the computational performance of the proposed technique. However, 

http://www.cadconferences.com/


25 
 

Proceedings of CAD’18, Paris, France, July 9-11, 2018, 21-25 
© 2018 CAD Solutions, LLC, http://www.cad-conference.net 

 
 
 

these extensions of the current method are far from being trivial, primarily due to the hanging nodes to 
be present between adjacent but differently-sized hexahedrons. 
 

 

 

  
(a) (b) (c) (d) 

 

Fig. 3 Generated -FE mesh for: (a) trabecular, (b) cellular foam, (c) glenoid, and (d) scapula samples. 
 

 
 

Fig. 4: Relationship between model size and -FE generation time. 
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