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Introduction: 
In work such as parts transport and processing, the parts or the effectors of a robot are often driven on 
a specified curvilinear path. Also, a car or a train often runs on a curved road or railway. When moving 
an object on a curved path, the force acting on the object includes not only the component in tangential 
direction but also the component in normal direction. Since the force acting on moving object is 
influenced by curvature and torsion of the path, they must be taken into account. How is an object 
driven through a curvilinear path as quickly as possible while limiting the force acting on it? It is the 
subject to be studied in this paper. 

In the following sections, we discuss the necessary constraints, formulating curvilinear motion, 
algorithm, a calculated example and the verification by using an actual manipulator.  

Previous Studies: 
So far, cam curves have been often used for path driving [13]. These curves are formulated by some 
elementary functions, so they are easy to be used. However, these curves were originally created for 
linear motion, not for curvilinear path. Its driving velocity does not take into account the change in 
curvature of the path and it takes more driving time than necessary.  

As a study of the shortest time driving on the curvilinear path, Bobrow et al. suggested a method by 
considering limitations of angular velocity and torque of actuators [1]. They expressed the dynamics of 
the driving system with curve length of the path. Then, the minimum time driving pattern is created by 
maximally accelerating and maximally decelerating segments. By this mean, the resultant driving pattern 
guarantees shortest time driving. However, the acceleration in acceleration-deceleration switching 
position is not continuous. This driving method is so-called bang-bang control, and is evidently not a 
smooth driving.  

In order to overcome the disadvantages of the bang-bang control described above, some improving 
studies were carried out [3-4],[6-7],[10-12],[16]. In addition to limiting the angular velocity and the 
maximum torque of actuators, the limitation on torque's time derivative was also considered. However, 
in practical application, one wishes to limit the forces acted on an object moving on the path rather than 
its actuator's torque. These two subjects are actually not equivalent. For example, when rotating a 
manipulator's arm fixed on the vertical shaft of a motor with high speed, an object fixing on the arm 
top moves on a circular orbit. In this case, a strong centrifugal force will be acted on it (in radial direction), 
but this force is absorbed by the bearing of rotating shaft and is not reflected on rotational torque of 
the motor. A car passing through a curvilinear road at high speed without considering this centrifugal 
force may face dangers of falling or side-slipping. 

In this research, the focus is put not on torque of the actuators but on object moving on its path 
with given kinematic constraints such as velocity, acceleration and jerk. Up to now, this approach has 
not been well studied. 
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Constraints and Formulation: 
 
Kinematic Constraints 

In curvilinear motion, velocity, acceleration and jerk of the moving object are vectors. We take maximum 
absolute values of those vectors as the constraints. The velocity need to be limited for safety reasons. 
Limitation of maximum acceleration is important because it is proportional to the force acted on the 
moving object. By limiting maximum jerk, the changing rate of acceleration is restricted and smooth 
movement can be realized. 

In actual operation, the constraints of velocity, acceleration and jerk are decided by the purpose of 
application. For example, when moving a fragile object such as a cake, both acceleration and jerk ought 
to be lowly limited. By setting the constraints suitably, it is possible to achieve time optimal driving 
while reducing the moving vibration. 
 
Formulation of Curvilinear Motion 
For brevity, we consider the moving object as a mass point. A curvilinear path is shown in Fig. 1. Here, 
s is the curve length from path start point, h represents total path length and r(s) represents position 
vector of the moving mass point. The definitions of velocity v, acceleration a and jerk j are given in 
equation (1).  

 

Fig. 1:  A particle moving on curvilinear path. 

 

{

𝒗 = �̇�(𝑠) = 𝑑𝒓(𝑠)/𝑑𝑡

𝒂 = �̈�(𝑠) = 𝑑2𝒓(𝑠)/𝑑𝒕2

𝒋 = �⃛�(𝑠) = 𝑑3𝒓(𝑠)/𝑑𝒕3
                                             (1) 

 

{

𝑑𝑻/𝑑𝑠 = 𝜅𝑵
𝑑𝑵/𝑑𝑠 = −𝜅𝑻 + 𝜏𝑩
𝑑𝑩/𝑑𝑠 = −𝜏𝑵

                                  (2) 

 

{
𝒗 = �̇�𝑻
𝒂 = �̈�𝑻 + �̇�2𝜅𝑵
𝒋 = (𝑠 − �̇�3𝜅2)𝑻 + (3�̇��̈�𝜅 + �̇�3𝜅′)𝑵 + �̇�3𝜅𝜏𝑩

     (3) 

 

At an arbitrary point P on the curvilinear path, we express the corresponding curvature as κ and the 
corresponding torsion as τ. The Frenet-Serret formulas [9] are shown in Eqn. (2). Here, T, N and B are 
unit vectors in tangential, normal and bi-normal directions respectively. Notice d/dt = (ds/dt) d/ds and 
dr/ds = T, we can combine Eqn. (1) and (2) to obtain Eqn. (3). Here, �̇�, �̈� and 𝑠  are the first, second and 
third order derivatives of s with respect to time,  κ′ is derivative of the curvature to curve length. In Eqn. 
(3), �̇�  represents the velocity (tangential direction), �̈�  and �̇�2𝜅   represent tangential and normal 
acceleration component, 𝑠 − �̇�3𝜅2, 3�̇��̈�𝜅 + �̇�3𝜅′ and �̇�3𝜅𝜏 represent the tangential, normal and bi-normal 
jerk components respectively. 

 
Formulating the Problem 
Let V, A and J represent the constraints (the maximum absolute values of v, a and j ), h represents the 
total path length, 𝑡𝑓 represents the final moving time. Our optimizing problem can be expressed as Eqn. 

(4). The limitations of �̇�, �̈� and 𝑠  are determined in Eqn. (5).  
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{
 
 
 
 
 
 

 
 
 
 
 
 

𝑑𝑠/𝑑𝑡 = �̇�

𝑑2𝑠/𝑑𝑡2 = �̈�

𝑑3𝑠/𝑑𝑡3 = 𝑠
0 ≤ 𝑠 ≤ ℎ
0 ≤ �̇� ≤ 𝑉

�̈�2 + �̇�4𝜅2 ≤ 𝐴2

(𝑠 − �̇�3𝜅2)2 + (3�̇��̈�𝜅 + �̇�3𝜅′)2 + �̇�6𝜅2𝜏2 ≤ 𝐽2

𝑠(0) = 0, 𝑠(𝑡𝑓) = ℎ

�̇�(0) = 0,   �̇�(𝑡𝑓) = 0

�̈�(0) = 0,    �̈�(𝑡𝑓) = 0

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒[𝑡𝑓 = ∫ (1/�̇�)𝑑𝑠
ℎ

0
]

                                            (4) 

{
 
 

 
 
�̇�𝐻 = min {𝑉, (𝐴/𝜅)

1/2}   

�̈�𝐻 = (𝐴
2 − �̇�4𝜅2)1/2  

�̈�𝐿 = −(𝐴
2 − �̇�4𝜅2)1/2

𝑠𝐻 = �̇�
3𝜅2 + (𝐽2 − (3�̇��̈�𝜅 + �̇�3𝜅′)2 − �̇�6𝜅2𝜏2)1/2 

�̈�𝐿 = �̇�
3𝜅2 − (𝐽2 − (3�̇��̈�𝜅 + �̇�3𝜅′)2 − �̇�6𝜅2𝜏2)1/2 

                                      (5) 

 

Notice that the acceleration and jerk of a moving object are a and j, not �̈� and 𝑠 . The latter ones are 
simply used as convenient variables for finding the time optimal driving pattern. Actually,  �̈�  is the 

tangential component of a，but  �⃛� is not even the tangential component of j. The tangential component 

of j is 𝑠 − �̇�3𝜅2 indeed.  

Algorithm: 
Eqn. (4) are differential equations with assigned boundary condition and nonlinear constraints on state 
variables. The solution to this kind of problem has not been well established [2],[8],[14-15]. The 
algorithm proposed here can be considered as the jerk extension of Bobrow et al. The algorithm uses 
bisection method. Though this is not a fast algorithm, but it can give accurate results and it is reliable. 
First, we define AME and BME driving pattern as follows. 

AME: Accelerating with Maximum Effort by using 𝑠H and �̈�H. 

BME: Braking to stop with Maximum Effort by using  𝑠L and  �̈�L. At the braking end, both �̇� = 0 and �̈� = 0 
must be satisfied (It means that �̈� must be bring to zero by using  𝑠H when reaching stop). 

Calculating Procedure 

1. Set 𝑠1 = 0, �̇�1 = 0 and �̈�1 = 0. 

2. From 𝑠1, �̇�1 and �̈�1 state, calculate AME until it contradicts the given constraints. Denote the final 
state as 𝑠2, �̇�2 and �̈�2. 

3. For [𝑠1,  𝑠2], using bisection method to calculate the optimal point which switches from accelerating 
to braking. This procedure is an iterative calculating of AME and BME. 

4. If 𝑠 at the end of Step.3 just reaches final position 𝑠 = ℎ, all calculating is finished. Otherwise, 
move one mini step along the calculated BME. Set the new state to 𝑠1, �̇�1 and �̈�1, then repeat Step.2.  

The iterative calculation of AME and BME is the core of this algorithm. Notice �̈� must be continuous 
because of jerk constraint. 

Calculation result: 

As calculating examples, the time optimal driving pattern on a s-shape path are shown in Fig. 2. The 
path shape, curvature, torsion and the curvature's derivative are plotted with respect to curvilinear path 
length. The speed, acceleration and jerk of the calculated time optimal driving pattern are plotted with 
respect to time. �̇�(𝑡), �̈�(t) and 𝑠(𝑡) are drawn with thick lines and the others are drawn with thin lines. 
The calculation conditions are listed as follows. 
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1) Constraints: 

V = 1000 mm/s. 

A = 1000 mm/s2. 

J =5000 mm/s3. 

2) Path length h =1000 mm. 

3) Mini time step adopted for calculation: Δt = 1 ms. 

 

 

Fig. 2:  Minimum time driving patterns on s-curve of h =1000 mm. 
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On the s-shape path, the curvature is zero at the starting point, the midpoint and the end point. The 
path has a segmental linear curvature distribution. Since the curvature changes along the path, the 
limitations of  �̇�(𝑡), �̈�(𝑡) and  𝑠(𝑡) possess complicated shapes. The maximum curvature is κmax = 3π/1000  
rad/mm. Maximum value of calculated velocity is   �̇�𝑚𝑎𝑥 = 502.713 mm/s and the required driving time 
is T = 3129 ms. 

Verification: 

The actual verification is shown in Fig. 3 and Fig. 4. This is an experiment of tracking s-shape path using 
a manipulator with orthogonally driving arms. The driving data to each motor is sending via EtherCAT 
which transmits data at high speed with 1 ms cycle [5]. Since the movable range of this manipulator 
cannot draw s-shape of 1000 mm length, a half scale condition is adopted as following. 

1) Constraints: 

V = 500 mm/s. 

A = 500 mm/s2. 

J = 2500 mm/s3. 

2) Path length h = 500 mm. 

3) Mini time step adopted for calculation : Δt = 1 ms. 

 
 

 
 

Fig. 3  Plot s-curve by a manipulator 
 
 

 

Fig. 4:  The driving result on s-shape path using actual actuator. 

 

Fig. 4 is the measured result (created with the angle sensor on motor shaft) by using both time optimal 
driving pattern and traditional cam driving pattern (the modified constant velocity CAM curve). With the 
same driving time, the maximum acceleration when using the time optimal pattern is lower than that of 
using the modified constant velocity CAM pattern. This means smoother curvilinear movement is 
realized. 

http://www.cad-conference.net/


70 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 65-70 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

Conclusions: 
In this paper, an algorithm for calculating time optimal driving pattern on a curvilinear path is obtained. 
The driving pattern satisfies constraints of velocity, acceleration and jerk. By applying restraint of jerk, 
noise, vibration and mechanical fatigue can be reduced and smooth driving is obtained. 
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