
5

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 5-9
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Slicing Point Clouds for 3-D Printing

Authors:
William Oropallo, woropall@mail.usf.edu, University of South Florida
Les A. Piegl, lespiegl@mail.usf.edu, University of South Florida
Paul Rosen, prosen@usf.edu, University of South Florida
Khairan Rajab, khairanr@gmail.com, Najran University

Keywords:
3-D printing, NURBS, Point cloud, Object slicing

DOI: 10.14733/cadconfP.2017.5-9

Introduction:

Due to the complexity and the instability of numerical methods, the common practice of slicing has
been to decompose the free-form object, designed with NURBS [4], into simple facets (triangles) and
slice the faceted (STL) model. This seems like a doable approach, however, decades of experience has
shown that this approach, while avoids complex mathematical issues, creates its own numerical
problems. To begin with, tessellating a complex NURBS model is a difficult task and the authors have
yet to see a robust tessellator. But never mind the tessellator, the fundamental problem flies in the
face of CAD companies that work collaboratively, yet their systems are largely incompatible. When the
part travels down the design pipeline, it is converted from one data format to the other. By the time it
reaches the printer, it suffers from gaps, overlapping surfaces, dangling edges, just to name a few. Put
a tessellator to it and slice it, and you have a disaster.

This paper argues that it is time to ditch everything that is complex, error prone and inaccurate,
and organize the rest into a simple system that is easy to maintain. In this research we eliminated the
STL conversion and all error–prone numerical algorithms, and converted the NURBS object to the
simplest entity: a set of points, Figure 1. The slicing is done on the point cloud model employing
practically no numerical procedure.

The organization of the paper is as follows. First we introduce some printer notations along with a
summary of point cloud generation. Then we process points into layers, separate multiple contours,
find boundaries, purge some cells and fit a B-spline curve to get the final section.

Printer setup and point cloud generation:

We take two parameters from the 3-D printer: (1) - the layer thickness. We assume this to be a

constant throughout the printing process, and (2) - accuracy, i.e. the addressability of the printer,
the printer head can move from position to position with at least that much distance. No other
assumptions are made and no special characteristic of the printer is needed.

Given a collection of B-spline surfaces (,), 0, ,NiS u v i , covering the complex part (see Figure 1), we

want to turn this set of surfaces into a point cloud Q , j 0, ,Mj , so that for each query point

Qk there is a one-ring neighborhood in which there is at least one point Ql so that Q Qk l .

In other words, we are processing the NURBS model into a quasi-uniform point set so that any circle
with a radius contains at least one point. This may seem like a simple task, however, to do it

http://www.cadconferences.com/

6

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 5-9
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

economically without oversampling and to do it efficiently, it requires a sophisticated algorithm whose
details are given in [3]. For reasons of space saving we refer the reader to this paper for further details.

Fig. 1: Head modeled by a set of NURBS surfaces (left), point cloud model (right, model courtesy of
Direct Dimensions, Inc.).

Overview of the algorithm:

Given the point cloud, we are ready to intersect it with a slicing plane. First, we lay a grid of size on
that plane. The vertices of the grid are the addressable locations of the printer head. Second, we add
voxels of size on each grid cell above and below the plane. Each cell is then marked as WHITE and
the slicing plane is considered preprocessed for intersection. The next step is to find all sub-surfaces
that intersect the slicing plane. Then for all points on the sub-surfaces we do the following:

• If the point is more than distance away from the plane, it is discarded.

• If the point is within distance, we find the voxel the point is in and mark the
corresponding cell as GRAY.

• For all GRAY cells do:

o If there are points in the voxels above and below, we mark the cell BLACK.

o If there are points in the voxel above, we mark the cell RED.

o If there are points in the voxel below, we mark the cell BLUE.

Figure 2 shows the RED, the BLUE as well as the BLACK cells for layer No. 3 in the head model
above. Please note that at this stage only a partial intersection is found in terms of BLACK cells where
the surfaces cross the plane. Other intersections occur from one cell to the next, not within the same
cell. In order to find these, we need to look for transitions from RED to BLUE or BLUE to RED, Figure 3.

As Figures 3 shows, there are more BLACK cells representing the intersection curve than we need,
so we are going to discard some of them to create a one cell thick point set. Since the curve is used in
printing, the outer-most cells are retained whereas the inner ones will be eliminated. A simple way to
do that is to use a seed fill algorithm to fill the area outside the closed curve [2]. To prepare, first
compute the bounding box of all BLACK cells and offset the box by one cell in each direction. Mark all
cells in the box WHITE.

http://www.cadconferences.com/

7

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 5-9
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Fig. 2: RED, BLUE and BLACK cells for layer No. 3.

Fig. 3: A superset of BLACK cells covering the intersection of layer No. 3.

The algorithm starts with the lower left cell (the artificially created one that is known to be empty) and
uses a 4-connected pattern to flood the area outside the closed curve. The 4-connected pattern has
four cells for each cell, up and down and left and right of the cell.

Once the recursion stops, all boundary cells are collected and the rest are eliminated. Figure 4
shows the result of the flood fill algorithm: the red cells are eliminated whereas the black ones are
kept. The result is a one cell thin discrete set of curves that will now be turned into a smooth B-spline
curve. To do that, the points need to be ordered and to make that easier, one final beautification needs
to be done: the removal of corner configurations. A corner configuration is three neighboring cells
forming a right angle, e.g. the current cell has a right and a top neighbor, a right and a bottom
neighbor, a left and a bottom neighbor, and a left and a top neighbor. The cell that is at the corner is
eliminated.

The one cell thin discrete curve is approximated by a B-spline curve to within a given tolerance
that is at most . The algorithm was designed for medical data that is very similar to our cell-based
data, however, it tends to be much more complicated than CAD data. The accuracy of the fitting is so
good that it never misses a cell (MRI pixel) while conveying the shape of the data. Here we only outline
the method, the details of which are found in [1].

http://www.cadconferences.com/

8

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 5-9
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Fig. 4: Finding boundary cells for layer No. 3.

Fig. 5: B-spline curve fitted to the points in layer No. 3.

Let us represent the cells by their centers. This gives us a set of ordered points Q , j 0, ,Mi ,

that must be approximated by a B-spline curve of degree p [4]:

C(u) N
i,p

(u)P
i

i0

n

After the approximation the curve should not deviate from the point set more than the tolerance.
That is, the following must hold:

(u) is assumed at umax i i i i
i
Q C Q

The outline of the algorithm is as follows:

• De-noise the point set if necessary. In most cases this is not necessary for 3D printing.

• Decompose the point set into regions of similar complexity.

http://www.cadconferences.com/

9

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 5-9
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

• The number of decomposed segments are used to determine the number of control points
needed to achieve the required accuracy.

• Use the decomposition points to compute a knot vector for approximation with or without
end derivatives. Note that the choice of the knot vector is critical both for efficiency and
for numerical stability.

• Fit a B-spline curve with the computed degrees of freedom and the knot vector and check
the error.

• If the error satisfies the required tolerance, we are done. Otherwise, a better
decomposition is computed and the fitting is repeated.

Figure 5 shows the final result for layer No. 3. Figure 6 shows the final results: intersections for
layers 3, 260 and 452 on the left, and all intersections for every ten slices on the right.

Fig. 6: Layers 3, 260 and 452 (left) and every ten slices from top to bottom (right).

References:
[1] Grove, O.; Rajab, K.; Piegl, L. A.; Lai-Yuen, S.: From CT to NURBS: bio-modeling with B-spline

curves, Computer-Aided Design & Applications, 8(1), 2011, 3-21.
https://doi.org/10.3722/cadaps.2011.3-21

[2] Heckbert, P. S.: A seed fill algorithm, in Glassner, A. S. (ed.) Graphics Gems, Academic Press, New
York, 1990.

[3] Oropallo, W.; Piegl, L. A.; Rosen, P.; Rajab, K.: Generating point clouds for slicing free-form
objects for 3-D printing, Computer Aided Design & Applications, 14(2), 2017, 242-249.
http://dx.doi.org/10.1080/16864360.2016.1223443

[4] Piegl, L.; Tiller, W.: The NURBS Book, Springer-Verlag, New York, NY, 1997.
http://dx.doi.org/10.1007/978-3-642-59223-2

http://www.cadconferences.com/
https://doi.org/10.3722/cadaps.2011.3-21
http://dx.doi.org/10.1080/16864360.2016.1223443
http://dx.doi.org/10.1007/978-3-642-59223-2

