
384 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 384-388 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 

 
 

Title: 
Edge Restoration for Triangle Mesh Models Derived from Grid-Based Machining Simulation 

Authors: 
Ziqi Wang, qiqi007@mail.ustc.edu.cn, The University of British Columbia 
Jack Szu-Shen Chen, jsschen38@gmail.com, The University of British Columbia 
Jimin Joy, jiminjoy@mail.ubc.ca, The University of British Columbia 
Hsi-Yung Feng, feng@mech.ubc.ca, The University of British Columbia 

Keywords: 
Machining Simulation, Workpiece Model, Machined Edge Restoration 
 
DOI: 10.14733/cadconfP.2017.384-388 

Introduction: 
Chamfered edges occur in triangle mesh models generated from discrete machining simulation methods 
such as vector approximation methods [3],[11],[13] and voxel and space partitioning methods [6-9].  The 
sharp edge of intersection between two machined surfaces is replaced by a thin chamfer surface.  In the 
case of representing the machined workpiece as a triangle mesh model, the thin chamfer surface appears 
as a set of triangles that runs between the triangles representing the surfaces on either side of the 
original edge (Fig. 1).  Chamfered edges happen for triangle meshes generated from the vector and voxel 
based simulations because of the grid structure of the underlying simulation methods.  Sampled surface 
points are only available at grid crossings.  It is often the case that edges do not cross the grid exactly.  
These edges are not captured, resulting in chamfered edges.  Presence of chamfered edges reduces the 
accuracy of the generated mesh model and deteriorates the visual quality.  Thus, chamfered edges need 
to be restored as they happen unwantedly.  Machining simulation using vector and voxel based 
simulation methods is quite popular due to its efficiency but the issue of chamfered edges needs to be 
properly resolved.  To address this issue, this paper presents a fast edge restoration scheme for triangle 
mesh models generated from grid-based machine simulation. 

                            
   (a) (b) 

Fig. 1: Chamfered edges: (a) Two ideal machined surfaces with an intersecting edge and sampled points 
on each surface obtained from the fixed spatial grid, and (b) Triangle mesh approximation from the 
sampled points resulting in an additional chamfer face (pale red) in place of the original edge. 
 
In order to restore the edges of a triangle mesh from grid-based machining simulation, a new method 
has been developed after considering existing methods applied in similar situations.  Among the existing 
methods, feature conserving triangle mesh generation for tri-dexels by Ren et al. [13] is a notable method 
as it works using a space partitioning intermediate model called regularized tri-dexels.  The method 
stores the surface normal vector at each dexel end point and updates it from the cutting tool envelope 
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surface when the dexel is trimmed during the simulation.  The triangle mesh generation later uses these 
surface normal vectors to restore the edge features.  Using the dexel end points coincident with edges 
of each grid cell, the boundary loop for the triangle patch(es) within the grid cell is identified.  The 
surface normal vector of each dexel end point in the loop is then used to identify the appropriate 
additional sampled points to be added to restore portions of the edge feature within the grid cell.  To 
adapt this method for generic grid-based machining simulation is not possible since internal 
modification of the simulation method is required.  Generic edge feature restoration techniques are 
available such as bilateral denoising by Fleishman et al. [4] and sharp feature recovery using an energy 
optimization technique by Liu et al. [12].  However, these methods target noisy meshes generated from 
physical part scanning.  The need to deal with noise derived from scanning causes unnecessary 
overheads which push these algorithms’ processing time above the acceptable limit for machining 
simulation.  Edge restoration in machining simulation is meant to restore the chamfered edges without 
noticeable alteration to the overall simulation time.  Since machining simulation time is typically in the 
order of seconds, edge restoration needs to be a sub-second processing task. 

Proposed Method: 
The initial step in edge restoration is the proper identification of chamfered edges.  Identification of 
these entities not only significantly narrows the processing regions for the subsequent restoration 
algorithm, it also segments the triangle mesh model into geometrically similar patches.  This facilitates 
faster and more accurate information extraction necessary for the realization of a computationally fast 
edge restoration scheme. 

A parallel two-component edge extraction approach is developed in this work to detect chamfered 
edges efficiently.  One component is an edge-based segmentation method and the other is a feature-
based segmentation method.  This work takes advantage of the benefits of the two dissimilar 
segmentation methods and attempts to mitigate their individual issues via the strength of the other 
method.  For the edge-based method, the primary advantage is its simplicity and speed.  It is only 
necessary to distinguish between edges and non-edges, making the segmentation problem simple.  The 
edge-based method can, thus, quickly extract edges with tolerable precision.  In this work, K-mean 
clustering [5] is adapted and used for the edge segmentation.  Per-vertex principal curvature values are 
used as the edge segmentation measure.  Nonetheless, edge-based segmentation lacks extraction 
precision.  Manual editing is often needed to achieve good extraction precision [1].  Without manual post-
processing, broken, incomplete and incorrect edge segments are typically obtained.  To overcome this 
issue, a refinement process is applied and the result from an inexpensive feature-based segmentation 
method is then used to filter the edge-based segmentation results.  The employed refinement process 
checks for broken edge segments.  If a particular edge segment is not closed and is within a specified 
length, the edge segment is removed.  After the edge segment check, it is necessary to verify each edge 
vertex for correctness by examining the normal variance of the edge vertex’s one-ring neighbors.  If the 
variance suggests that the edge vertex lies on a flat region, the edge vertex is moved to the non-edge 
group. 

To complete the edge extraction task, feature-based segmentation is used to improve the results of 
edge-based segmentation.  Since the subject of feature segmentation has been studied in depth, many 
methods are available.  Comprehensive surveys of mesh segmentation by Shamir [14] and Agathos et al. 
[1] include many of these methods.  For the purpose of this work, the basic region growing method 
suffices.  The method is simple and effective.  In fact, due to the special properties of the grid-based 
machining simulation model meshes, the basic region growing method performs very well.  Since the 
meshes are derived through a grid system, the difference in vertex normals within a grid is minimal.  
This enables the basic region growing method, utilizing the vertex normal difference as the segmentation 
measure, to divide the input meshes into individual feature patches efficiently and reliably.  Still, feature-
based segmentation via region growing does not perform precise edge extraction completely.  However, 
feature-based segmentation focuses on features rather than edges; therefore, it produces similar but 
often different restored edges than the edge-based method.  This difference is used to filter the results 
from the edge-based method.  Any broken and/or incomplete edge segment that falls on a feature is 
removed.  Complete edge segments determined from the edge-based segmentation are kept.  Further, 
the feature-based segmentation result is used to identify the corner triangles which are a subset of the 
edge triangles.  The parallel combination of the two types of methods gives high computational speeds 
and good edge extraction results. 
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With the edges and corners extracted, per-vertex normals are estimated via averaging the one-ring 
non-edge face normals to facilitate edge and corner restoration.  Once the estimate of normals is 
complete, the edges and corners are restored by splitting the edge and corner triangles.  This is done 
based on the method of Attene et al. [2].  As shown in Fig. 2, new vertices representing edges and corners 
(M’ in Fig. 2) are added and their locations are determined from the adjacent per-vertex normals.  It 
should be noted that the method presented here has used both curvature and normal estimates at each 
mesh vertex to restore the machined edges and corners.  This is conceptually different than many 
existing methods such as the method of Kobbelt et al. [10] that evaluates only the variation of normals 
at mesh vertices. 

 
Fig. 2: Triangle split for edge restoration: (a) Edge triangles, and (b) Corner triangle. 

 
It should be noted that the quality of the resulting triangles due to the above point insertion is not always 
good.  The most critical problem is flipped triangles for edge triangles and spikes for corner triangles.  
A flipped triangle can be generated when the projection of the new edge vertex M’ to the triangle’s plane 
it is derived from lies outside of the triangle’s projected boundary.  This does not happen for edges that 
span features with very different normals.  For edges with adjacent features that have similar normals, 
flipped triangles become a notable issue.  A slight variance in the approximated normal from the actual 
normal can cause M’ to be displaced far from M (the actual edge point location).  Furthermore, since a 
triangle mesh is only a piecewise approximation of the actual machined geometry, mesh resolution can 
likewise cause flipped triangles.  Due to the lack of resolution, small features can be lost within a triangle.  
This implies that the normals of the features adjacent to an edge triangle can disagree.  If the resolution 
used is not sufficient, M’ can be displaced far from M.  To avoid these flipped edge triangles, projection 
of M’ must fall within the projected boundary of the triangles which M’ is derived from.  It has been 
decided that given the cause of flipped edge triangles, it is best to avoid adding any new M’ for the 
triangles that do not satisfy the above condition.  These flipped triangles result from the limit of triangle 
mesh approximation.  It is not meaningful to find a solution when the approximation accuracy or 
resolution is inadequate to gauge where M should be located.  Therefore, if the above condition is not 
satisfied, the edge triangle is not split and M’ is not added. 

When the same issue discussed above occurs for corners, spikes are generated.  The mechanism that 
causes spikes is the same as that for flipped triangles.  Hence, if adding M’ results in a spike, M’ is not 
added.  To identify a spike, the differences between the normals of the triangles that surround a corner 

triangle are compared.  If an angle difference of these normals is above 150, M’ is not added.  With this 
added condition and the one to avoid flipped triangles, the proposed edge restoration method in this 
work, shown in Fig. 3, produces very good results. 
 

 
 

Fig. 3: Main steps in the presented edge restoration method. 
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Summary of Implementation Results: 
By effectively combining simple and yet efficient edge-based and feature-based segmentation and edge 
restoration methods, a computationally fast edge restoration method for triangle mesh models derived 
from grid-based machining simulation is developed.  Fig. 4 shows some edge restoration results.  The 
model edges for the three cases shown can be seen to be restored correctly.  For the first case (the Mech 
model), as this is a model machined by 2½-D flat-end milling with no machined scallops, the edge 
restoration is achieved with a 100% rate.  For the second case (the FrogFace model), as this is a model 
machined by 3D ball-end milling, machined scallops are present on free-form surface patches that are 
adjacent to the flat top surface, the developed edge restoration method restores about 96% of the edge 
and corner points.  For the third case (the Cavity model), as all the machined surfaces have machined 
scallops, the edge and corner restoration rate is at 79%.  The lower restoration rate is expected since 
intersections of machined surfaces all characterized with scallops produce a very complex region of 
intersecting edges (many scallop edges intersecting with the model edges), which makes it very difficult 
to correctly restore the model edges.  Even so, the developed method is found to be able to restore edges 
and corners better than the existing methods.  Tab. 1 lists the total processing time for the three cases 
along with the breakdown for the three main processing steps. 

 
 

Fig. 4: Edge restoration cases for triangle mesh models from grid-based machining simulation. 

 

  Mech FrogFace Cavity 

Number of Triangles 277,524 255,792 272,152 

Edge-Based Segmentation (sec.) 0.037 0.047 0.053 

Feature-Based Segmentation (sec.) 0.116 0.100 0.147 

Edge and Corner Restoration (sec.) 0.084 0.069 0.084 

Total (sec.) 0.237 0.216 0.284 
 

Tab. 1: Total processing time and its breakdown of the presented edge restoration method. 
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