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Introduction: 
Recently, aesthetic design which takes account of designability has become popular. In the aesthetic 
design, the creation of High-quality curve and surface models is demanded. However, on current CAD 
systems, the operator must move control points by trial and error to obtain high-quality curves and 
surfaces. This incurs high costs and requires a great deal of expertise. Therefore, an efficient method 
to generate fair curves and surfaces is desirable to achieve high quality that will satisfy customers’ 
aesthetic requirements. 
The log-aesthetic curve was proposed as a curve which satisfy these quality requirements. Harada et al. 
[1] defined “Aesthetic curves” as curves whose logarithmic distribution diagram of curvature (LDDC) 
can be approximated by a straight line. In response to this research, Miura et al. [3] derived analytical 
solutions of the curves whose logarithmic curvature graph (LCG) as an analytical version of the LDDC 
is strictly given by a straight line and defined the curve as the log-aesthetic curve. For a given curve, 

the arc length of the curve and the radius of curvature are denoted by s and , respectively. The log-
aesthetic curve satisfies the following equation. 

 dcs +=  (1.1) 

Here, , c, and d are constants. In particular,   is the slope of LCG and a parameter for controlling the 
impression of the curve. Fig.1 illustrates log-aesthetic curves for various  values. Since the log-
aesthetic curve defined by use of curvature as above equation, its curvature distribution is smooth. In 
addition, it includes logarithmic (equiangular) spiral, clothoid, and circular involute as well as Nielsen’s 
spiral. For these reason, it is expected to be utilized in the field of aesthetic design [8].  
Although the log-aesthetic curve has a number of good properties, it is difficult to extend it to the 
surfaces because of complexity of its general equation. As a solution of this problem, the minimum 
variation log-aesthetic surface [7] was proposed. This surface is defined as the surface which minimize 
an objective function and allows the usage of arbitrary boundary curves. However, the value of the 
objective function depends on the scale of model and parameterization. 

In this research, we derive a new formulation of the minimum variation log-aesthetic surface for Scale-

invariance and Parameterization-independence. 
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Fig. 1: Log-aesthetic curves with various  values. 

Minimum Variation Log-aesthetic Surface: 
As mentioned in the introduction, it is very difficult to extend the log-aesthetic curve to the surface 
that have similar good properties to the log-aesthetic curve. To solve this problem, two surface 
formulas besides the minimum variation log-aesthetic surface have been proposed that generate free-
form surfaces by sweeping the log-aesthetic surface [2,6]. The log-aesthetic curved surface [2] is 
defined as a sweeping surface using two profile curves, which are composed of log-aesthetic curves, 
and one guide line composed of a non-log-aesthetic curve. The surface guarantees the isoparametric 
curves parallel to two profile curves become the log-aesthetic curve and the quality along the 
isoparametric curve is guaranteed. In contrast, the isoparametric curves parallel to the guide line do 
not become log-aesthetic curves and high quality in this direction cannot be guaranteed. As a solution 
to this problem, Saito et al. proposed the complete log-aesthetic surface [6]. The complete log-aesthetic 
curve described is defined as a pure sweeping surface with two log-aesthetic curves. This formulation 
also uses the log-aesthetic curve as the guide line and guarantees that all parametric curves are log-
aesthetic curves. However, for these two formulations, at least one boundary curve cannot be specified. 
Consequently, the situations where these formulations can be used are severely restricted. 
In contrast, the minimum variation log-aesthetic surface can be used for bounded by arbitrary four 
curves. Minimum variation log-aesthetic surface is defined by reformulating the log-aesthetic curve 

with the variational principle and extending it to surfaces. From Eqn. (1.1), when we assume  =  the 

log-aesthetic curve is given by a straight line connecting two given points (s1, 1) and (s2, 2) in the s- 
plane (aesthetic space) as shown in Fig.2 where the horizontal and vertical axes are the arc length s 

and , respectively. Therefore, from the variational principle, the log-aesthetic curve is reformulated as 
a curve that minimizes the following energy JLAC. 
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 +=   (2.1) 

The Euler equation of Eqn. (2) is as follows. 

 0=ss  (2.2) 

Obviously, Eqn. (2.1) is equivalent to the second derivative of Eqn. (1.1). Furthermore, the Euler 
equation of Eqn. (2.1) is equivalents to that of the following equation KLAC. 
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Finally, Eqn. (2.3) is represented by the arc length parameter s, and we rewrite Eqn. (2.3) using a general 
parameter t and obtain the following expression: 
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Here, ||dC/dt|| represents the norm of the first derivative of curve C with general parameter t. We use 
Eqn.  (2.4) as the objective function of the log-aesthetic curve. 

 

Fig. 2: Straight line connecting two given points (s1, 1) and (s2, 2) in the s- plane (aesthetic space). 
 
The objective function of the log-aesthetic surface is derived by extending the objective function of the 
log-aesthetic curve KLAC to surfaces. The objective function is defined so that minimizing the objective 
function transforms isoparametric curves into log-aesthetic curves. We obtain the following objective 
function JLAS by applying Eqn. (2.4) to both the direction of surface and define the minimum variation 
surface as minimizing this function. 
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Here, E and G are elements of the first fundamental and are given by E=∂S/∂u･∂S/∂u and G=∂S/∂v･∂S/∂

v, respectively. u and v are the radii of curvature of isoparametric curves with u and v direction, 
respectively. In the integral of Eqn. (2.5), the first term is the optimization term of the isoparametric 
curve with u direction and the second term is the optimization term of the isoparametric curve with v 
direction. 
 
As isoparametric curves become log-aesthetic curves, this minimum variation surface is equivalent to 
the complete log-aesthetic surface. However, as this formulation defines the surface by minimizing the 
objective function, the minimum variation surface is markedly different from the complete log-
aesthetic surface. That is, the minimum variation surface can specify an arbitrary boundary curve, and 
hence the objective function can be used for generation of the surface. In many boundary cases, 
surfaces in which the isoparametric curves completely become log-aesthetic curves cannot be 
generated. 

Scale-invariance: 
Moreton and Sequin [5] introduced the minimum variation surface (MVS) functional that measures 
curvature variation by integrating the principal curvature's squares of derivatives in its principal 
directions. They derived the its scale invariance [4]. Multiplication of the area term is used for scale 
invariance and scale invariance of the MVS functional is given by the following: 

  += dAdA
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 (3.1) 

where max and min are principal curvatures.  emax and emin are principal curvature directions.  
In this section, we will perform a similar modification for KLAC expressed in Eqn. (2.3) to make it scale-
invariant and extend it to surfaces. First, we consider a curve whose arc length is equal to 1. If the 

curve is log-aesthetic, i.e.  =  is a linear function of arc length s, there is a constant c such that 

 strendsc  −==  (3.2) 

Here, end and str are the value of  at both end points. 
Then, Eqn. (2.3) become  
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On the other hand, if we consider to introduce scale factor r and a curve which is scaled by that scale 

factor r. Then, arc length of the curve is equal to r and  =  becomes ’ = (r)=r. 
There is a constant c’ similarly to Eqn. (3.2) such that  

 )(1)(

strendr
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s rc strend  

−=== −−
 (3.4) 

And the value of the objective function Eqn. (2.3) become 

 ( )212222

1
strend

s

s
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  (3.5) 

Therefore, by replacing scale factor r with arc length of curve h, the scale-invariant objective function 
of Eqn. (2.3) is given by 

 
12 −− =

h

K
K LAC

SILAC  (3.6) 

Based on the curve case, we define the scale-invariance objective function of surface. First, as in the 
curve case, we consider a surface whose area is equal to 1. we separate the two terms in Eqn. (2.5) into 
two integrations with u and v directions as follows 

  += duKdvKJ vLACuLACLAS __  (3.7) 

Here,  
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Note that KLAC_u and KLAC_v indicate the objective function of log-aesthetic curve Eqn. (2.4) with respect to 
iso-parametric curves of parameter direction u and v respectively. 
Next, we consider the case that the surface is scaled by scale factor r (such that the area of surface 

become r2). Then, from the discussion of the curve case, KLAC_u and KLAC_v are scaled to r2-1 times. 
Furthermore, microelements du and dv also are scaled to rdu and rdv. Therefore, we obtain the 
following equation. 
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Finally, we obtain the scale-invariant objective function of Eqn. (2.5) by comparing Eqn. (3.7) with Eqn. 
(3.10) as follows 
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Here, A = r2 are the area of the surface. 

Parametarization independence: 
The objective function of minimum variation log-aesthetic surface Eqn. (2.5) is defined so that the 
isoparametric curves of minimized surface become log-aesthetic curve. However, this formulation 
includes surface parameter u, v and depend on parametarization. We archive parametarization-

independence by using principal curvature of radius max and min. 
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Here, we note that maxe and mine are derivatives of surface with principal direction (i.e. 

1minmax == ee  is not always consist). 

Especially, when  and  = -1, from =1/ and t=d/dt(1/)=-t/2, (4.1) becomes: 
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If we assumed 1minmax == ee , Eqn. (4.2) is locally equivalent to the objection function of the 

minimum variation surface [5]. 
Additionally, by the same discussion in previous chapter, we obtain the following scale-invariance 
objective function: 
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Especially, when  and  = -1, we obtain following: 
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Eqn. (4.4) is locally equivalent to the scale-invariant objection function of the minimum variation 
surface Eqn. (3.1). 
 

Results: 

In this section, we adopted the objective function given in Eqn. (4.4) for B-spline surfaces and 
optimize the control points of the surface by minimizing the objective function. At that time, we 
impose constraints on coordinates of and tangent vectors across the boundary curves as 
boundary conditions. Hence, we fix two control points from the boundary to fix the shape of the 
boundary curves and tangent vectors across them and input these control points. We used the 
downhill simplex method [8] for optimization.  

We applied our method to complete log-aesthetic surfaces [6] to which noise had been added. One 

of the formulations of a complete log-aesthetic surface is given by the following equation. 
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where  and  are surface parameters, bp, and bg are shape parameters, tr tz are offset parameters, 

Rz() is a rotation function around the z axis, and Sc(ek) is the scaling function. First, we generate 
a complete log-aesthetic surface with bp=0.2, bg=0.2, tr=5, and tz=3. Next, we cut part of the 
surface and approximate this surface with bicubic B-spline, which has 10×10 control points. 
Finally, noise is added to the surface and our objective function is applied (i.e., we optimize the 
inner 6×6 control points). We used a PC with a Core i7-7700 3.60 GHz CPU. 
Fig.3 shows generated surfaces. In the figure, the original surface is shown on the left, the surface 
with noise is shown in the middle, and the surface optimized by our method is shown on the 
right. The processing time for optimizing surfaces is 140 [s]. Fig.4 and Fig.5 show the mean 
curvature distribution and zebra map of these surfaces. These results showed that the surface 
with added noise is markedly disturbed. In contrast, after optimization, the surface is not 
disturbed and has almost the same quality as the original surface. 
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Fig. 3: Generated surfaces. Left: before optimization. Middle: surface with added noise. Right: after 
optimization. 

 
 

Fig. 4: Mean curvature distribution. Left: before optimization. Middle: surface with added noise. Right: 
after optimization. 

 
 

Fig. 5: Zebra map. Left: before optimization. Middle: surface with added noise. Right: after 
optimization. 

 

Conclusion: 
In this research, we derive a new formulation of the minimum variation log-aesthetic surface for Scale-

invariance and Parameterization-independence. Furthermore, we generate surfaces by minimizing the 
objective function. The results indicated that we can obtain free-form surfaces of high quality. 
However, the processing times required for relatively large surfaces are expected to be very long. 
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Therefore, in future, we will use GPU processors to reduce the processing time and hope to 
achieve a real time. 
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