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Introduction: 

Segmentation of geometry data is one of the fundamental problems in computer-aided design and 
geometry modeling. The problem can be briefly stated as a task of finding a partition S  of a geometry 
X . Mathematically, a partition S  of a set X  is a disjoint collection of nonempty and distinct subsets 

of X  such that each member of X  is a member of some, and hence, exactly one member of S  [12]. 

Intuitively, there can be more than one such a collection for a given X , and the problem of geometry 
data segmentation is, hence, to find the most perceptually sound partition of a given geometry X . 
Albeit ambiguous, the “perceptually sound” segmentation is, in general, defined based on a certain 
similarity metric depending on the application such that visually similar and contiguous members of 
X  belong to the same subset of S .  

In this regard, a large variety of computational methods has been proposed so far. Among those 
different approaches, one of the key challenges they share in common is how to define the similarity 
metric between the members of X . For example, Katz et al. [6] used the dihedral angle between two 
adjacent facets in order to define the likeliness of the two facets belonging to the same segment. 
Similarly, Page et al. [9] used the principal curvature values as a metric to set the threshold for the 
watershed clustering method. More recently, distance measures that utilizes manifold-intrinsic 
operators, such as the Laplace Beltrami operator, were reported to be more robust, especially for the 
segmentation tasks involving the isometric deformations [1],[5],[11],[14]. In this paper, we propose a 
novel method for deriving a shape-aware surface metric using the geodesic curvature flow (GCF). We 
find the GCF has a property of evolving the distance metric in a way that is more preferable for the 
segmentation tasks. 

The Method: 
A brief overview of the method is as follows. First, the geodesic distance between every pair of vertices 
on an input mesh X  is computed as our initial surface metric. We then evolve the surface metric via 
the GCF in order to achieve better measurement for the clustering task. Using the eigenfunctions of 
the new metric, we find the spectral embedding of X . Finally, we cluster the vertices on the spectral 

configuration, which gives a visually intuitive segmentation of X . The new metric essentially is an 
indicator of how likely two distinct points are in the same segment. Hence, the spectral embedding will 
lead to a projection of X  onto a higher dimensional space such that the distances between the points 
are reconfigured according to their likeliness of belonging to the same segment. Relevant literatures 
report that well-known metrics (e.g., Euclidean distance, geodesic distance) perform well for such a 
segmentation method based on a spectral embedding [7-8], but we found that a new metric achieved 
by evolving the geodesic distance via the geodesic curvature flow performs much better than the 
conventional metrics. 

http://www.cadconferences.com/


333 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 332-336 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

 
Geodesic Curvature Flow 
The geodesic curvature flow (GCF) is a geometric flow, or informally, a continuous evolution of a curve 
that minimizes the arc length of a curve. Given a closed self-avoiding rectifiable curve  lying on a 

differential d -manifold M  embedded in n (d n ), the energy functional of the GCF is defined as 

follows: 

 ( )E dl  (2.1) 

Here, we restrict our curve to be rectifiable in order to make sure that it is integrable. A curve  on a 

manifold M  is said to be rectifiable if and only if the length of every geodesic polygon formed by 

vertices 
1( ), , ( )nt t , 

10 1nt t  can be bounded from above by the length of the curve for 

some parameterization ( )t , [0,1]t  and under the induced metric of M . This consequently means 

that the curve  is a function with bounded variations, and thus integrable. 

In a level set formulation, the energy functional in Eqn. (2.1) is converted from a line integral to a 
surface integral on a manifold by the coarea formula [4]: 

 ( ) ( )E dA
M

 (2.2) 

where  is a level set formulation of the curve  such that the contour of 0  is equal to .  is 

the Dirac’s delta function. Consequently, the energy functional in Eqn. (2.2) can further be reduced to 
the Euler-Lagrange partial differential equation: 

 ( ) 0 , (2.3) 

 0
n
M

 (2.4) 

where M is the boundary of M  and n  is the outward normal at the boundary. For closed M , the 

boundary condition is ignored automatically. 

Further, for the discretization, we introduce a so-called “smoothed out” delta function, ( )  

as like in the standard level set methods to obtain the following gradient descent flow: 

 
t

, (2.5) 

Time integration of Eqn. (2.5) provides us the “evoloved” level set function ( )t  of the original function 

0 . Fig. 1 shows such an evolution of a level set function defined on a human model. An interesting 

behavior of the GCF is that it “diffuses” and smooths out the level set function except for the narrow 
necks of the manifold. This property can also be observed from Fig. 1, in which the level set function 
is smoothed out, and hence, the function value does not change much over the large, continuous 
areas; whereas the level set contours are converged around relatively narrow parts such as neck, 
wrists, knees, ankles, waist, and so on, and hence, the function value changes relatively faster. 
Therefore, if the level set function was a surface distance from a certain point p  (the top of the head 

in Fig. 1), then the evolved function under the GCF would be a better metric for the segmentation 
tasks, which is our insight for the proposed method in this paper.  
 
Geometry-Aware Metric via Geodesic Curvature Flow 
As aforementioned, one of the characteristics of the GCF is that it tends to evolve faster on large, 
continuous areas and significantly slower on narrow areas. Especially, level set curves under the GCF 
tend to converge near the shortest homotopic cycles. Our key insight here is to exploit such a 
characteristic of the GCF to evolve the distance metric on the surface in aware of the geometric 
contiguity. 
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Fig. 1: Evolution of a level set function under the geodesic curvature flow (from left to right). 

 
To achieve so, we first start with the geodesic distance ( , )d p x  from a given point p  on the manifold 

surface M . We then substitute ( ) ( , )x d p x  in Eqn. (2.5) and integrate along certain time t  to obtain a 

new distance function g : 

 
0

( , ) : ( )
t

tg p x x dt  (2.6) 

Note here that the initial computation of the geodesic distance function d  does not have to be the 

exact geodesics, since d  converges to g  under the GCF in a fairly robust manner despite of small 

minor variations of the function values. This allows the use of fast approximate methods for the 
computation of the geodesic distance, such as [3], or even, the simple Euclidean distance. 

For the spatial discretization, we simply assumed that the function value changes linearly on each 
of the triangular facets in the mesh. Based on this, gradient and divergence operators are defined as 
finite difference operators similar to the ones used in [3]. For the time discretization, we used the 
implicit Euler method. 

We repeat this process for every vertex 
iv  in the mesh to obtain a distance matrix G  whose 

elements are ( , ) ( , )i jG i j g v v . The distance matrix G  is initially not symmetric, since there is no 

mechanism of restricting the GCF to retain the symmetry ( , ) ( , )g x y g y x . Hence, we make G  

symmetric simply by updating it to 1
2
( )TG G G  in favor of computational simplicity, where TG  is 

the matrix transpose of G . 
 
Spectral Embedding and Clustering 

Spectral embedding is a commonly used technique for projecting a manifold embedded in n  to a 

different mathematical space S , with applications such as nonlinear dimensionality reduction [13], 
surface parameterization [15], and so on. Similarly to [8], we utilize spectral embedding to facilitate 
the clustering task. To do so, we first compute the affinity matrix A  using the Gaussian kernel:  

 
2 2( , ) 2

( , )
G i j

A i j e  (2.7) 

Note here that ( , )A i j  varies, by definition, in the range (0,1]  depending on the likeliness between two 

vertices iv  and jv . In addition, from the inherent nature of the Gaussian kernel, ( , )A i j  drops 

significantly towards zero when ( , ) 2G i j . Therefore, we simply cutoff values outside 2  to zero to 

achieve a highly sparse affinity matrix ( , )A i j , which has a significant numerical advantage for the 

computation over the original dense matrix. 

The affinity matrix is then normalized to 1/2 1/2N D AD in order to eliminate the effect of 

different vertex densities, where D  is a diagonal matrix each of whose elements is the sum of the 

corresponding row of A , i.e., ( , ) ( , )
j

D i i A i j . 
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Finally, we compute the spectral embedding of the mesh by performing the eigendecomposition of 

the normalized affinity matrix N . That is, when we write 
1 2, , , K  as the K -largest eigenvalues 

eigenvalues of N  and 
1 2, , , Ke e e as their associated eigenvectors, the spectral embedding of the mesh 

is then represented as 1/2Y E , where  is a K -by-K  diagonal matrix whose elements are 

1 2, , , K  and 
1 2 KE e e e . Here, Y can be thought of as a new coordinate matrix in K -

dimensional space for the vertices of the mesh. The new embedding, Y  brings the similar points 
closer while it pulls the dissimilar points further apart [2]. Therefore, the clustering task in the 
spectral embedding is easier and more robust than that in the original embedding. 

Result: 
Using the proposed method, we computed segmentation for a number of benchmark models. Fig. 2 
shows the result of segmentation performed on the benchmark models using the GCF metric, in 
comparison with the other distance metrics. … 
 

Geodesic Distance Only Geodesic Distance + GCF Geodesic Distance Only Geodesic Distance + GCF 

    

    
Fig. 2: Comparison of the spectral segmentation method with the geodesic distance metric (left 
columns) and the improved metric via the GCF (right columns). 
 

Conclusion: 
In this paper, we presented a novel method for the segmentation of a 3D mesh that utilizes the GCF. 
The GCF-induced metric was preferable for the segmentation tasks in a sense that it provides a better 
shape-awareness for the dissimilarity measure. In addition, even though we demonstrated the results 
only on the triangular meshes, the method can be generalized to any 3D geometry domain, since our 
formulation does not assume any particular domain. Instead, as long as there is a well-defined 
differential operators (i.e., gradient and divergence), our method can be seamlessly scaled to different 
domains including the parametric surfaces, point clouds, and polygonal meshes (see e.g., [3]). 

Despite of the satisfactory performance of our method, it could struggle for the tasks that 
requires the surface segmentation with respect to small ridges and valleys, as the GCF tends to ignore 
such features. In this regard, a mathematical insight to improve our method is to introduce an 
additional weight function to the GCF energy ( )E . For the GCFs, the weight function acts as a 

“stopping function” that makes the flow relatively slower than the other areas. Therefore, by 
introducing  composed of the terms related to the principal curvature values, we could improve the 
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distance metric even further, which will be our future work. In addition, since the new metric 
possesses a good shape-awareness, a shape descriptor that encodes the geometric characteristics into 
a set of numerical values could be developed in the similar spirit of e.g., [10]. 
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