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Introduction: 
A curve is considered fair if it consists of continuous and few monotonic curvature segments. Polynomial 
curves such as Bézier and B-spline curves have complex curvature function hence the curvature profile 
may oscillate easily with a little tweak of control points. Thus, bending energy and shear deformation 
energy are common fairness metrics used to produce curves with monotonic curvature profiles. The 
fairness metrics are used not just to evaluate the quality of curves, but it also aids in reaching to the 
final design. 
 
Curve synthesis is a process of generating curves with a well-defined Cesáro equation, which describes 
the curvature 𝜅 of a curve as a function of its arc length 𝑠. Log-aesthetic curves (LAC in short) [3] are 
generated with a Cesáro equation derived by letting the Logarithmic curvature graph (LCG) as a linear 
function with the gradient as a . This curve has gained its momentum in design environment and now is 

it used for automobile [4] and architecture [6] design. The family of LACs includes logarithmic 
(equiangular) curves (𝛼 = 1), clothoid curves (𝛼 = −1), circle involutes (𝛼 = 2) and Nielsen’s spiral (𝛼 = 0). 
It is possible to generate and deform LACs in real time regardless of its integral forms using their unit 
tangent vectors as integrands when 𝛼 ≠ 1,2. 
 
Recently, Sato and Shimizu [5] expressed LACs by a simple equation in similarity geometry where the 
direction angle 𝜃  of a given curve is invariant. For a given curve 𝐶(𝜃) = (𝑥(𝜃), 𝑦(𝜃)) , the similarity 
curvature 𝑆(𝜃) ≡ −𝜌𝜃/𝜌 is also invariant where 𝜌 is radius of curvature and 𝜌𝜃 = 𝑑𝜌/𝑑𝜃. Thus, the slope 
of the LCG of a LAC can be expressed by 

 

𝛼 =
𝑆𝜃

𝑆2 + 1                                                                         (1) 

  
The similarity curvature of LAC satisfies the following Riccati (Bernoulli) equation:  

 
𝑆𝜃 = (𝛼 − 1)𝑆2                                                                    (2) 

  
The above equation can be solved easily to obtain the similarity curvature of LAC as follows:  
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𝑆(𝜃) =
−1

(𝛼−1)𝜃+𝑐
                                                                     (3) 

 
where 𝑐 is an integral constant.  
 
In this paper, we propose two types of fairness metric functionals to fair plane curves defined by the 
similarity geometry invariants, i.e. similarity curvature and its reciprocal to extend a variety of aesthetic 
fairing metrics. Section 4 also illustrates numerical examples to show how LACs changes depending on 

α and G^1 constraint. In section 5, we introduce an extra term for our functionals and symmetry 

concept for LAC. 
 

Similarity Geometry: 
We may deduce to figures similar each other when these figures possess the same shape even if their 
sizes are different. In similarity geometry if two objects are similar, then we deduce that both are 
equivalent. In Euclidean geometry, circles with different radii are considered different entity, but in 
similarity geometry circles with different radii are regarded as the same.  
 
In this section, we derive similarity Frenet frame to introduce the definition of similarity curvature and 
show its role in similarity geometry [2]. Since we know that the arc length 𝑠  may vary, thus the 
representation of plane curves is in the form of direction angle 𝜃 parameterized which is invariant by 
scaling. First, let a plane curve is given as a function of its arc length by 

  
𝐶(𝑠) = (𝑥(𝑠), 𝑦(𝑠))                                                                   (4) 

  
and its Frenet frame 𝐹(𝑠) = (𝑇(𝑠), 𝑁(𝑠)). We assume the curve is not a straight line and the direction angle 
𝜃 is defined by 

  

𝜃 = ∫ 𝜅(𝑠)
𝑠

0
𝑑𝑠.                                                                      (5) 

.  

Next, let tangent vector 𝑇𝑆𝑖𝑚(𝜃) as follows to define the Frenet frame in similarity geometry,   
 

𝑇𝑆𝑖𝑚(𝜃) ≡
𝑑𝐶

𝑑𝜃
(𝜃).                                                                    (6) 

 
Thus, we may simplify as  

  

𝑇𝑆𝑖𝑚(𝜃) =
𝑑𝐶

𝑑𝑠

𝑑𝑠

𝑑𝜃
=

1

𝜅(𝑠)
𝑇(𝑠)                                                           (7) 

  
where 𝑇(𝑠) is the first derivative of 𝐶(𝑠) with respect to s and it is a unit tangent vector of the curve.  Let 

𝑁𝑆𝑖𝑚(𝜃) be   
  

𝑁𝑆𝑖𝑚(𝜃) =
1

𝜅(𝑠)
𝑁(𝑠)                                                                 (8) 

.  

Since det(𝑇𝑆𝑖𝑚, 𝑁𝑆𝑖𝑚) = 1/𝜅2, hence 𝐹𝑆𝑖𝑚(𝜃) = (𝑇𝑆𝑖𝑚(𝜃), 𝑁𝑆𝑖𝑚(𝜃)) has a value in    

  
𝐶𝑂+(2) = {𝑋 ∈ 𝐶𝑂(2)| det 𝑋 > 0}                                                       (9) 

  
where 𝐶𝑂+(2)  is a set of 2 × 2  real matrix 𝐴  such that 𝐴𝐴𝑇 = 𝑐𝐸  for an arbitrary constant 𝑐 . Here 

𝐴𝑇  denotes a transpose of matrix 𝐴 and 𝐸 does a unit matrix. The derivatives of 𝑇𝑆𝑖𝑚(θ) and 𝑁𝑆𝑖𝑚(𝜃) are 
given by   
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𝑑

𝑑𝜃
𝑇𝑆𝑖𝑚(𝜃) = −

𝜅𝑠(𝑠)

𝜅(𝑠)2
𝑇𝑆𝑖𝑚(𝜃) + 𝑁𝑆𝑖𝑚(𝜃)                                                 (10) 

  
𝑑

𝑑𝜃
𝑁𝑆𝑖𝑚(𝜃) = −

𝜅𝑠(𝑠)

𝜅(𝑠)2
𝑁𝑆𝑖𝑚(𝜃) − 𝑇𝑆𝑖𝑚(𝜃)                                                  (11) 

  
From equation (10) and (11), we define  

  

𝑆(𝜃) =
𝜅𝑠(𝑠)

𝜅(𝑠)2
                                                                         (12) 

  
Equation (12) is an invariant in similarity geometry and it is denoted as similarity curvature. Therefore, 

𝐹𝑆𝑖𝑚(𝜃) satisfies the following differential equation:  
  

𝑑

𝑑𝜃
𝐹𝑆𝑖𝑚(𝜃) = 𝐹𝑆𝑖𝑚(𝜃) (

−𝑆(𝜃) −1
1 −𝑆(𝜃)

)                                                (13) 

.  
The above equation is called the formula of Frenet frame in similarity geometry. 
 

Similarity Geometry Invariants: 
As stated in the previous section, by regarding direction angle 𝜃 as a function of arc length s, the 
similarity curvature 𝑆(𝜃(𝑠)) is defined by 

  

𝑆(𝜃(𝑠)) =
1

𝜅(𝑠)2

𝑑𝜅

𝑑𝑠
= −

𝑑𝜌

𝑑𝑠
                                                              (14) 

  
where 𝜅  is curvature. Similarity radius of curvature 𝑉(𝜃(𝑠))  is defined as a reciprocal of similarity 
curvature 𝑆(𝜃(𝑠)) and it is derived as follows 

  

𝑉(𝜃(𝑠)) =
1

𝑆(𝜃(𝑠))
=

𝜅(𝑠)2

𝑑𝜅

𝑑𝑠

= −
1

𝑑𝜌

𝑑𝑠

                                                       (15) 

  
In this paper, two types of functionals are proposed to fair a plane curve 𝐶(𝑡) whose domain is [𝑎, 𝑏]. The 
first type is given by  

  

𝐹𝑠𝑐(𝐶(𝑡)) = ∫ 𝑆(𝜃(𝑡))2 𝑑𝜃

𝑑𝑡
𝑑𝑡

𝑏

𝑎
                                                          (16) 

  
and the second type is  

  

𝐹𝑠𝑟𝑜𝑐(𝐶(𝑡)) = ∫ 𝑉(𝜃(𝑡))2 𝑑𝜃

𝑑𝑡
𝑑𝑡

𝑏

𝑎
                                                      (17) 

  
Eqns. (16) and (17) are now rewritten as follows:   

  

𝐹𝑠𝑐(𝐶(𝑡)) = ∫
1

𝜅(𝑠)4 (
𝑑𝜅

𝑑𝑠
)

2
𝜅(𝑠)𝑑𝑠

𝑙

0
= ∫

1

𝜅(𝑠)3 (
𝑑𝜅

𝑑𝑠
)

2
𝑑𝑠

𝑙

0
= ∫

1

𝜌(𝑠)
(

𝑑𝜌

𝑑𝑠
)

2
𝑑𝑠

𝑙

0
                        (18) 

  
where 𝑙 is a total length of curve 𝐶(𝑡). Similarly, the second type is rewritten as follows: 

  

𝐹𝑠𝑟𝑜𝑐(𝐶(𝑡)) = ∫
𝜅(𝑠)5

(
𝑑𝜅

𝑑𝑠
)

2 𝑑𝑠
𝑙

0
= ∫

1

𝜌(𝑠)(
𝑑𝜌

𝑑𝑠
)

2 𝑑𝑠
𝑙

0
                                                 (19) 

 
Consider two traditional functionals commonly used for fairing plane curves:    
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∫ 𝜅2(𝑠)𝑑𝑠
𝑙

0
                                                                               (20) 

called bending energy and    
  

∫ (
𝑑𝜅

𝑑𝑠
)2𝑑𝑠

𝑙

0
                                                                               (21) 

 
called shear deformation energy. These functionals are clearly different from 𝐹𝑠𝑐 or 𝐹𝑠𝑟𝑜𝑐. 
  

Euler-Lagrange Equations [1]: 
 
Similarity Curvature 
From equation (18):  

  

𝐹𝑠𝑐(𝐶(𝑡)) = ∫ 𝑓𝑠𝑐(𝑠)𝑑𝑠
𝑙

0
= ∫

1

𝜅(𝑠)3 (
𝑑𝜅

𝑑𝑠
)

2
𝑑𝑠

𝑙

0
                                                (22) 

  
Its Euler-Lagrange equation in terms of 𝜅 is     

  
𝜕𝑓𝑠𝑐

𝜕𝜅
−

𝑑

𝑑𝑠

𝜕𝑓𝑠𝑐

𝜕𝜅̇
= −3

𝜅̇2

𝜅4
− 2

𝑑

𝑑𝑠

𝜅̇

𝜅3
=

3

𝜅4
(𝜅̇2 −

2

3
𝜅𝜅̈) = 0                                      (23) 

 
where 𝑔̇ = 𝑑𝑔/𝑑𝑠 and 𝑔̈ = 𝑑2𝑔/𝑑𝑠2 for function g of s. constant.  
 
It is known that LACs satisfy the following equation [3]:     

  
𝜅−𝛼 = 𝑐𝑠 + 𝑑                                                                    (24) 

  
where 𝑐 and 𝑑 are constants. We obtain Eqn. (25) after differentiating both sides of the above equations 
twice: 

 
−𝛼(−𝛼 − 1)𝜅−𝛼−2𝜅̇2 − 𝛼𝜅−𝛼−1𝜅̈ = 0                                                (25) 

  
If 𝛼 ≠ 0 and −𝛼 − 1 ≠ 0 (𝛼 ≠ −1), then     

  

𝜅̇2 −
1

𝛼+1
𝜅𝜅̈ = 0                                           (26) 

  
By comparing Eqns. (23) and (26), the curve which minimizes Eqn. (22) is a log-aesthetic curve whose 𝛼 
is equal to 1/2. This fact demonstrates that LAC can be expressed by a simple similarity curvature, which 
has a natural property and plays an important role in similarity geometry.  
 
On the other hand, from    

  

𝐹𝑠𝑐(𝐶(𝑡)) = ∫
1

𝜌(𝑠)
(

𝑑𝜌

𝑑𝑠
)

2
𝑑𝑠

𝑙

0
                    (27) 

  
its Euler-Lagrange equation in terms of 𝜌 is     

  
𝜕𝑓𝑠𝑐

𝜕𝜌
−

𝑑

𝑑𝑠

𝜕𝑓𝑠𝑐

𝜕𝜌̇
= −

𝜌̇2

𝜌2 − 2
𝑑

𝑑𝑠

𝜌̇

𝜌
=

1

𝜌2
(𝜌̇2 − 2𝜌𝜌̈) = 0                                        (28) 

  
Similarly, Eqns. (24) and (25) are rewritten with 𝜌    

  
𝜌𝛼 = 𝑐𝑠 + 𝑑                                                                      (29) 
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and    
  

𝛼(𝛼 − 1)𝜌𝛼−2𝜌̇2 + 𝛼𝜌𝛼−1𝜌̈ = 0                                                    (30) 
  

are satisfied by LACs. If 𝛼 ≠ 0 and 𝛼 − 1 ≠ 0 (𝛼 ≠ 1), then      
  

𝜌̇2 +
1

𝛼−1
𝜌𝜌̈ = 0                                                                  (31) 

  
By comparing Eqns. (28) and (31), the curve which minimizes Eqn. (27) is a log-aesthetic curve whose 𝛼 
is equal to 1/2. This result is consistent to that of the curvature formulation shown above. 
 
Similarity Radius of Curvature 
From equation (19)   

  

𝐹𝑠𝑟𝑜𝑐(𝐶(𝑡)) = ∫ 𝑓𝑠𝑟𝑜𝑐(𝑠)𝑑𝑠
𝑙

0
= ∫

𝜅(𝑠)5

(
𝑑𝜅

𝑑𝑠
)

2 𝑑𝑠
𝑙

0
                                                 (32) 

  
its Euler-Lagrange equation in terms of 𝜅 is     

  
𝜕𝑓𝑠𝑟𝑜𝑐

𝜕𝜅
−

𝑑

𝑑𝑠

𝜕𝑓𝑠𝑟𝑜𝑐

𝜕𝜅̇
=

𝜅4

𝜅̇2
+ 2

𝑑

𝑑𝑠

𝜅5

𝜅̇3
= 15

𝜅4

𝜅̇4
(𝜅̇2 −

2

5
𝜅𝜅̈) = 0                                       (33) 

  
By comparing Eqns. (33) and (26), the curve which minimizes Eqn. (32) is LACs whose 𝛼 is equal to 3/2. 
From    

  

𝐹𝑠𝑟𝑜𝑐(𝐶(𝑡)) = ∫ 𝑓𝑠𝑟𝑜𝑐(𝑠)𝑑𝑠
𝑙

0
= ∫

1

𝜌(𝑠)(
𝑑𝜌

𝑑𝑠
)

2 𝑑𝑠
𝑙

0
                                              (34) 

  
its Euler-Lagrange equation in terms of 𝜅 is     

  
𝜕𝑓𝑠𝑟𝑜𝑐

𝜕𝜌
−

𝑑

𝑑𝑠

𝜕𝑓𝑠𝑟𝑜𝑐

𝜕𝜌𝜅̇
= −

3

𝜌2𝜌̇4
(𝜌̇2 + 2𝜌𝜌̈) = 0                                                (35) 

  
By comparing Eqns. (35) and (31), the curve which minimizes Eqn. (34) is LACs whose 𝛼 is equal to 3/2. 
Again this result is consistent to that of the curvature formulation. 

Numerical Examples: 
Figure 1. shows the comparisons of LAC shapes whose 𝛼=1/2 and 3/2. It consists of three pairs of LACs 
and the curves in each pair are generated with the same G1 constraints. When the G1 constraints vary 
drastically from those for a circular arc, then the LAC shapes become distinctly different. Although the 
differences of their shapes are somehow restricted, switching 𝛼  from 1/2 to 3/2 and vice versa provides 
a subtle deformation of the curve.   
 

 
Fig. 1: Comparisons of LACs whose 𝛼=1/2 and 3/2. 
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Conclusions: 
In this research, we have proposed two types of fairness metric functionals for fairing a plane curve 
defined by similarity curvature and similarity radius of curvature, which are invariant in similarity 
geometry. We have shown that by minimizing the integral of square of similarity curvature, we obtain 

LACs whose α equals to 1/2. Similarily for similarity radius of curvature, we obtain LACs for α equals 

to 3/2. Thus, a clear interpretation of the effect of the slope of the logarithmic curvature graph, 

especially when α is equal to 1/2 and 3/2 are derived.  

We have extended our functionals to handle general LACs by introducing a power function of similarity 
curvature. The new functionals defined by similarity geometry invariants in Eqn. (4.15) is remarkably 
better than those previously proposed in [5, 10] because of its scale invariance. Furthermore, we have 
extended LAC by adding a term to the functional to suppress increase of the change of the direction 

angle of the curve and obtained quasi aesthetic curves and proposed σ curve to introduce symmetry 

concept for LAC. For future work, we would like to clarify the relationship between the quasi aesthetic 

and σ curves and to extend our fairing metrics for free-form surfaces. 
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