
288

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 288-292
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

Title:
STG-framework: A Pattern-Based Algorithmic Framework for Developing Generative Model of
Parametric Architectural Design at Conceptual Design Stage

Authors:
Chieh-Jen Lin, t60011@mail.tut.edu.tw, Tainan University of Technology

Keywords:
Design Intention, Parametric Design, Generative Modeling, Design Pattern, Algorithmic Framework

DOI: 10.14733/cadconfP.2017.288-292

Introduction:
Confusion concerning methods, thinking, and techniques among parametric, generative, and
algorithmic approaches has emerged with the appearance of more new digital design tools like
Grasshopper and Dynamo. Leach claims that one reason for this confusion is that the architectural
domain were unfamiliar with the computer science [8], and alludes to the differences between
parametric and algorithmic design, where parametric techniques are based on the manipulation of
geometric forms, while algorithmic design is based on the use of programming codes. But regardless
of whether through the manipulation of forms or the use of code, architects should be able to use
digital architectural design tools to solve architectural design problems. Kotnik proposed that digital
architectural design involves "exploring computable functions," which should take design information
as input parameters and buildings’ properties as output variables [7]. Literally, parametric design
implies that the algorithm is fixed, and that output variables are consequently predictable from
parameters. Generative modeling implies that output variables are not only controlled by input
parameters, but also by flexible and adjustable functions. However, the computable functions of
various architectural disciplines, in another word, the algorithms for solving various architectural
design problems, should be the key to many digital architectural design issues.

In computer science domain, an algorithm is a process for solving a problem in a finite number of
steps. Algorithmic modeling like Grasshopper was developed to automate and accelerate 3D modeling
tasks by applying generative algorithm. But cognitive research has revealed that designers prefer to
apply algorithms only as a means of exploring geometric intentions, but prefer to apply known
solutions and design patterns for other non-geometric issues [14]. When designers’ intentions go
beyond geometry, regardless of the type of design objective [3], designers need to find or develop
appropriate algorithms before they can implement generative or evaluative scripts. Algorithmic
modeling is gradually applied in generating complex forms, multiple objectives optimization, as well
as controlling and evaluations of buildings’ performances. One of the reasons is that the relevant
algorithms, including mathematical formulas of complex geometries, metaheuristic algorithms of
artificial intelligent [13], structural analysis, and energy consumption formulas, have been validated in
those domains. Thus the tasks of algorithmic design become to implement algorithms in modeling
tools, rather than to interpret architectural design problems and derive solving algorithms. Since there
are insufficient instructions and assistance for converting architectural knowledge into algorithmic
scripts, it is not surprising that designers prefer to apply known solutions, rather than develop or
implement algorithmic scripts on their own.

While fewer architects are directly employing the contents of Alexander’s pattern language [1],
more software engineers are applying "design patterns" in identifying and reusing the best practices in
known situations. Based on design patterns, such as the model-view-controller (MVC) pattern,
application frameworks have therefore been developed to facilitate and accelerate the development of

http://www.cadconferences.com/

289

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 288-292
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

applications. For example, Ruby on Rails, Symfony, and Django have been developed for web-based
applications in different programming languages. While programming/scripting skills have become
more critical when applying algorithmic tools in parametric architectural design, developing an
algorithmic framework for the exploration and development of algorithms can help architects to focus
on solving design problems, rather than on programming/scripting tasks. Based on previous studies
proposing information conversion patterns employing Building Information Model (BIM) schema,
which involve semantic, topological, and geometric information [9], this paper proposes an algorithmic
framework to help architects to explore and develop algorithms going beyond geometric intentions.

Main Ideas:
Unlike other studies focusing on algorithmic programming patterns [12], or architects' geometric
intentions [10], this paper proposes an algorithmic framework that aims to help architects for
connecting abstract design intentions by integrating semantic ontology and topological algorithms.
Based on the STG pattern proposed in previous studies [9], this framework is divided into three parts:
(1) a semantic module that can help architects to indicate design objects and their semantic relations
as the "Model" module in a MVC pattern, (2) a topological module that presents the topological
algorithms of given semantic relations as the "Controller" module in a MVC pattern, and (3) a
geometric module that presents the visual validation of topological algorithms as the "View" module in
a MVC pattern. This "Semantic-Topological-Geometric framework" (STGƒ) realizes an algorithmic
framework by applying Grasshopper and the GhPython plugin as an algorithm-aided design tool [11].

The Semantic Components as Representing Models of Design Intensions
Semantic ontology is a knowledge-representation technique in the artificial intelligence (AI) domain.
One of the most popular tools for authoring semantic ontology is Protégé, which is based on the
Ontology Web Language (OWL) originally used to develop semantic networks. By applying OWL
reasoner plugins, such as FaCT++ and HermiT, Protégé can validate an OWL-based ontology in order to
ensure that it is correct and consistent. Furthermore, the semantic web rule language (SWRL) plugin
can be used to express logic rules in order to infer implicit knowledge within the ontology. To convert
the semantic ontology of architects’ design intensions into generative algorithms, an ontological
technique based on Protégé was incorporated into the semantic module of STGƒ.

The first module of STGƒ is the "Semantic" component, which consists of the semantic
information of design intentions. In an MVC-based application, the Model module is used to capture
behavior and logical rules in the problem domain. In order to associate generative algorithms with
architectural design intentions, it must first represent design intentions in a computable format. At
early design stages, design intentions usually consist of abstract, textual descriptions concerning
various design objects and their relationships, and essential semantic information regarding building
components can be predefined in BIM applications and Industry Foundation Classes (IFC) schema.
However, although Rhino has no predefined semantic schema for building components in architectural
design, an architect may define or interpret his/her unique design objects and relationships, which
cannot be predicted by BIM or IFC during early design stages, when design situations have not yet
emerged. Rhino therefore needs a contextual semantic ontology [5], which is a computational format
for representing, storing, and validating a semantic ontology of domain knowledge in order to convert
architects’ design intensions into generative parametric design algorithms.

The Topological Modules as Generative Controllers of Design Intensions
Although ontological techniques can validate the conceptual consistency of design intentions, they
cannot guarantee that relevant instances of semantic concepts will also comply with the necessary
properties. For example, a partial ontology may indicate that an "OpenSpace" class has an
"ExistingTree" property allowing the inference of the "GoodQuality" property of the
"StaticLeisureActivity" class for seniors. However, it is also necessary to calculate the correlations
between the existing trees and the instance of the park in order to determine whether those existing
trees are located within the scope of the park. As a consequence, in addition to their definitions of
conceptual classes within the ontology, topological relationships must also address more feature
properties in specific instances.

http://www.cadconferences.com/

290

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 288-292
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

The second module of STGƒ is a "Topological" component, which is a controlling algorithm for
validating design intentions. In a MVC-based application, the "Controller" module is used to accept
operations from users to modify the data within models, and therefore controls interactive behavior
among different models in a system. Eastman suggested that topologies are the mathematical
relationships and fundamental definitions of parametric models in BIM [4]. At an early design stage,
topological relations expressing design intentions are usually abstract, and may consist of enclosure,
extension, and concentration of indoor/outdoor spaces and building masses [6]. Topological relations
among design objects defined within the "Semantic" module can thus be regarded as the "Controller"
of design intentions.

The Geometric Modules as Validating Views of Design Intensions
Since Grasshopper aims to generate 3D models through given algorithms, it seems unnecessary to add
other geometric functions. To ensure visual validation of whether a design intention has been
accomplished, however, it should provide more visual clues for users, such as textual and numerical
tags and colored previews. The final module of STGƒ is the "Geometric" component, which can validate
views of design intentions. In an MVC-based application, a "View" module is used to display
information concerning a retrieved "Model" and the results of "Controller." In architectural design,
architects always need visual feedback to validate the content of semantic ontologies or topological
behaviors of generative algorithms. By helping users to validate algorithms, immediate visual feedback
concerning generative algorithms is one of the most attractive features of Grasshopper. For design
intentions other than geometric features, especially in the case of invisible or non-obvious intentions
like outdoors spaces or mathematical ratios, geometric features can not only be input as parameters in
generative algorithms, but also be generated for the visual validation of design intentions. The
"Geometric" module of STGƒ therefore aims to demonstrate how to input geometric objects from
Rhino into the STGƒ "Semantic" and "Topological" modules, and how to provide visual clues for the
validation of users’ design intentions.

Initial Implementation of STGƒ
By providing rewritable example scripts and adjustable algorithmic modules, which are editable
clusters of algorithmic components in Grasshopper, the STGƒ aims to help architects to explore their
abstract intentions beyond geometric features at early design stages. For example, "community-
friendliness" issues have been the design subjects in Taiwan's architect qualification exam for three
consecutive years (Fig. 1). "Community-friendliness" issues concern how to arrange a building to form
high-quality spaces for facilitating community activities. However, the outdoors spaces shaped by a
building and its surroundings are usually ignored in the semantic ontology of BIM or IFC. In addition,
what features of a outdoor space can facilitate community activities still leave much room for
architects to interpret.

Fig. 1: Three different site contexts concerning "community-friendliness" issues in an architect
qualification exam in Taiwan: (a) an architect firm as the cornerstone of a good neighborhood in 2014,
(b) a community-friendly elementary school in 2015, and (c) a community library and public spaces in
2016.

http://www.cadconferences.com/

291

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 288-292
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

As an example, a candidate may propose the idea of preserving existing trees in order to rapidly form
a static leisure park for seniors, but another candidate may suggest the installation of more game and
sports equipment in order to improve the health of both seniors and children. If such design
intentions can be represented in OWL, then the logic reasoners in Protégé can help architects to
validate the ontology. By applying the semantic components of STGƒ, architects can hook semantic
ontologies from Protégé with Grasshopper’s generative algorithms. By the help of Protégé, STGƒ allows
abstract design intentions to be converted into a computational format, enabling them to be input as
the parameters of generative algorithms.

Although ontological techniques can validate the conceptual consistency of design intentions, they
cannot guarantee that all instances of semantic concepts will also comply with the necessary
properties. For the idea of preserving existing trees, it is necessary to calculate the correlations
between the existing trees and the instance of the park in order to determine whether those existing
trees are located within the scope of the park. As a consequence, in addition to their definitions of
conceptual classes within an intentional ontology, topological relationships must also address more
feature properties in specific instances. By applying the topological components of STGƒ, which are
rewritable example scripts and adjustable algorithmic modules, STGƒ can help architects to develop
more generative algorithms for exploring topological relations of their design intentions.

To ensure visual validation of whether a design intention has been accomplished, however,
Grasshopper may need more visual clues for users, such as textual and numerical tags and colored
previews. The geometric components of STGƒ therefore aim to demonstrate how to input geometric
objects from Rhino into the STGƒ "Semantic" and "Topological" modules, and how to provide visual
clues for the validation of users’ design intentions. As an example, the selection of the parking
entrance is based on two design intentions: (1) traffic on the narrower street is relatively small, and (2)
the entrance close the start point of the construction line can reduce pedestrian conflicts. After
implementing those intentions in STGƒ, users can input the contour of the site and the borderlines of
the streets around the site in order to generate a tag on the site for suggesting the location of the
parking entrance into the site (Fig. 2).

Fig. 2: An example algorithm is used to select a parking entrance into the site for reducing traffic
conflicts.

One of the major obstacles to applying generative modeling is that stakeholders cannot understand
the generative algorithms, especially when algorithms are too complex to be explained even by the
script authors themselves. The "Semantic" and the "Topological" modules can therefore help to
associate algorithms developed within generative modeling tools like Grasshopper with the
architectural design intentions that were applied within those algorithms. Based on the "geometric-
topological-geometric" pattern, this paper proposes an algorithmic framework termed STGƒ for
modeling design intentions that go beyond geometric forms.

Conclusions:
While critics have suggested that the use of generative tools can result in the over complexity of
simple things [2], generative algorithms should potentially be able to go beyond geometric intentions.

http://www.cadconferences.com/

292

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 288-292
© 2017 CAD Solutions, LLC, http://www.cad-conference.net

However, the programming and information technology knowledge usually becomes the biggest
obstacle for architects who wish to implement algorithms of their intentions beyond geometric
knowledge. As software frameworks can dramatically simplify and accelerate the development of an
application, the STGƒ framework proposed in this paper can also help designers to simplify and
accelerate the development of generative algorithms used in parametric architectural design.

One purpose of the MVC pattern is to divide programming tasks of a complex system into
independent objects. The STGƒ framework divides parametric design into three algorithmic procedural
steps, and can implement generative algorithms by different designers/scripters. As building projects
become more complex, instead of requiring architects to wear many hats associated with other
domains, it will be better to hand over programming/scripting tasks to professional scripters, and
performance optimization to MEP engineers. It is therefore time to embed architects’ design intentions
in the parameters, variables, and algorithms used in parametric architectural design.

Acknowledgements:

The Ministry of Science and Technology of Taiwan support this paper under grant number MOST 105-
2221-E-165-002.

References:
[1] Alexander, C.; Ishikawa, S.; Silverstein, M.: A Pattern Language : Towns, Buildings, Construction,

Oxford University Press, New York, 1977.
[2] Burry, M.: Scripting Cultures: Architectural Design and Programming, John Wiley and Sons, Ltd.,

Chichester, UK, 2011.
[3] Chang, M.-C.; Shih, S.-G.: A Hybrid Approach of Dynamic Programming and Genetic Algorithm for

Multi-criteria Optimization on Sustainable Architecture Design, Computer-Aided Design and
Applications, 12(3), 2014, 310-319. http://dx.doi.org/10.1080/16864360.2014.981460

[4] Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K.: BIM Handbook: A Guide to Building Information
Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed., John Wiley &
Sons Inc., Hoboken, N.J., 2011. http://dx.doi.org/10.1002/9780470261309

[5] Gursel, I.; Sariyildiz, S.; Stouffs, R.; Akin, Ö.: Contextual Ontology Support as External Knowledge
Representation for Building Information Modelling, in: T. Tidafi, T. Dorta (Eds.) Joining
Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, 487- 500.

[6] Ho, H.-Y.; Wang, M.-H.: Meta Form as a Parametric Design Language, in: eCAADe 2009, Istanbul,
Turkey, 2009, 713-718.

[7] Kotnik, T.: Digital Architectural Design as Exploration of Computable Functions, International
Journal of Architectural Computing, 8(1), 2010, 1-16. http://dx.doi.org/10.1260/1478-0771.8.1.1

[8] Leach, N.: Parametrics Explained, Next Generation Building, 1(1), 2014, 33–42.
[9] Lin, C.-J.: The STG Pattern: Application of a “Semantic-Topological-Geometric” Information

Conversion Pattern to Knowledge Modeling in Architectural Conceptual Design, in: Proceedings
of the 21st International Conference on Computer-Aided Architectural Design Research in Asia
(CAADRIA 2016), Melbourne, 2016, 435-444.

[10] Su, H.-P.; Chien, S.-F.: Revealing Patterns: Using parametric design patterns in building façade
design workflow, in: Proceedings of the 21st International Conference on Computer-Aided
Architectural Design Research in Asia (CAADRIA 2016), Melbourne, 2016, 167-176.

[11] Tedeschi, A.; Wirz, F.; Andreani, S.: AAD_Algorithms-Aided Design : parametric strategies using
Grasshopper, Le Penseur Publisher, Brienza, Italy, 2014.

[12] Woodbury, R.: Elements of Parametric Design, Routledge, New York, 2010.
[13] Wortmann, T.; Nannicini, G.: Black-Box Optimisation Methods for Architectural Design, in: 21st

International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA
2016), Melbourne, 2016, 177-186.

[14] Yu, R.; Gero, J.; Gu, N.: Architects' Cognitive Behaviour in Parametric Design, International
Journal of Architectural Computing, 13(1), 2015, 83-102.

http://www.cadconferences.com/
http://dx.doi.org/10.1080/16864360.2014.981460
http://dx.doi.org/10.1002/9780470261309
http://dx.doi.org/10.1260/1478-0771.8.1.1

