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Introduction: 
Confusion concerning methods, thinking, and techniques among parametric, generative, and 
algorithmic approaches has emerged with the appearance of more new digital design tools like 
Grasshopper and Dynamo.  Leach claims that one reason for this confusion is that the architectural 
domain were unfamiliar with the computer science [8], and alludes to the differences between 
parametric and algorithmic design, where parametric techniques are based on the manipulation of 
geometric forms, while algorithmic design is based on the use of programming codes.  But regardless 
of whether through the manipulation of forms or the use of code, architects should be able to use 
digital architectural design tools to solve architectural design problems. Kotnik proposed that digital 
architectural design involves "exploring computable functions," which should take design information 
as input parameters and buildings’ properties as output variables [7]. Literally, parametric design 
implies that the algorithm is fixed, and that output variables are consequently predictable from 
parameters. Generative modeling implies that output variables are not only controlled by input 
parameters, but also by flexible and adjustable functions. However, the computable functions of 
various architectural disciplines, in another word, the algorithms for solving various architectural 
design problems, should be the key to many digital architectural design issues. 

In computer science domain, an algorithm is a process for solving a problem in a finite number of 
steps. Algorithmic modeling like Grasshopper was developed to automate and accelerate 3D modeling 
tasks by applying generative algorithm. But cognitive research has revealed that designers prefer to 
apply algorithms only as a means of exploring geometric intentions, but prefer to apply known 
solutions and design patterns for other non-geometric issues [14]. When designers’ intentions go 
beyond geometry, regardless of the type of design objective [3], designers need to find or develop 
appropriate algorithms before they can implement generative or evaluative scripts. Algorithmic 
modeling is gradually applied in generating complex forms, multiple objectives optimization, as well 
as controlling and evaluations of buildings’ performances. One of the reasons is that the relevant 
algorithms, including mathematical formulas of complex geometries, metaheuristic algorithms of 
artificial intelligent [13], structural analysis, and energy consumption formulas, have been validated in 
those domains. Thus the tasks of algorithmic design become to implement algorithms in modeling 
tools, rather than to interpret architectural design problems and derive solving algorithms. Since there 
are insufficient instructions and assistance for converting architectural knowledge into algorithmic 
scripts, it is not surprising that designers prefer to apply known solutions, rather than develop or 
implement algorithmic scripts on their own. 

While fewer architects are directly employing the contents of Alexander’s pattern language [1], 
more software engineers are applying "design patterns" in identifying and reusing the best practices in 
known situations. Based on design patterns, such as the model-view-controller (MVC) pattern, 
application frameworks have therefore been developed to facilitate and accelerate the development of 
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applications. For example, Ruby on Rails, Symfony, and Django have been developed for web-based 
applications in different programming languages. While programming/scripting skills have become 
more critical when applying algorithmic tools in parametric architectural design, developing an 
algorithmic framework for the exploration and development of algorithms can help architects to focus 
on solving design problems, rather than on programming/scripting tasks. Based on previous studies 
proposing information conversion patterns employing Building Information Model (BIM) schema, 
which involve semantic, topological, and geometric information [9], this paper proposes an algorithmic 
framework to help architects to explore and develop algorithms going beyond geometric intentions. 

Main Ideas: 
Unlike other studies focusing on algorithmic programming patterns [12], or architects' geometric 
intentions [10], this paper proposes an algorithmic framework that aims to help architects for 
connecting abstract design intentions by integrating semantic ontology and topological algorithms. 
Based on the STG pattern proposed in previous studies [9], this framework is divided into three parts: 
(1) a semantic module that can help architects to indicate design objects and their semantic relations 
as the "Model" module in a MVC pattern, (2) a topological module that presents the topological 
algorithms of given semantic relations as the "Controller" module in a MVC pattern, and (3) a 
geometric module that presents the visual validation of topological algorithms as the "View" module in 
a MVC pattern. This "Semantic-Topological-Geometric framework" (STGƒ) realizes an algorithmic 
framework by applying Grasshopper and the GhPython plugin as an algorithm-aided design tool [11]. 

 
The Semantic Components as Representing Models of Design Intensions 
Semantic ontology is a knowledge-representation technique in the artificial intelligence (AI) domain. 
One of the most popular tools for authoring semantic ontology is Protégé, which is based on the 
Ontology Web Language (OWL) originally used to develop semantic networks. By applying OWL 
reasoner plugins, such as FaCT++ and HermiT, Protégé can validate an OWL-based ontology in order to 
ensure that it is correct and consistent. Furthermore, the semantic web rule language (SWRL) plugin 
can be used to express logic rules in order to infer implicit knowledge within the ontology. To convert 
the semantic ontology of architects’ design intensions into generative algorithms, an ontological 
technique based on Protégé was incorporated into the semantic module of STGƒ. 

The first module of STGƒ is the "Semantic" component, which consists of the semantic 
information of design intentions. In an MVC-based application, the Model module is used to capture 
behavior and logical rules in the problem domain. In order to associate generative algorithms with 
architectural design intentions, it must first represent design intentions in a computable format. At 
early design stages, design intentions usually consist of abstract, textual descriptions concerning 
various design objects and their relationships, and essential semantic information regarding building 
components can be predefined in BIM applications and Industry Foundation Classes (IFC) schema. 
However, although Rhino has no predefined semantic schema for building components in architectural 
design, an architect may define or interpret his/her unique design objects and relationships, which 
cannot be predicted by BIM or IFC during early design stages, when design situations have not yet 
emerged. Rhino therefore needs a contextual semantic ontology [5], which is a computational format 
for representing, storing, and validating a semantic ontology of domain knowledge in order to convert 
architects’ design intensions into generative parametric design algorithms. 

 
The Topological Modules as Generative Controllers of Design Intensions 
Although ontological techniques can validate the conceptual consistency of design intentions, they 
cannot guarantee that relevant instances of semantic concepts will also comply with the necessary 
properties. For example, a partial ontology may indicate that an "OpenSpace" class has an 
"ExistingTree" property allowing the inference of the "GoodQuality" property of the 
"StaticLeisureActivity" class for seniors. However, it is also necessary to calculate the correlations 
between the existing trees and the instance of the park in order to determine whether those existing 
trees are located within the scope of the park. As a consequence, in addition to their definitions of 
conceptual classes within the ontology, topological relationships must also address more feature 
properties in specific instances. 
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The second module of STGƒ is a "Topological" component, which is a controlling algorithm for 
validating design intentions. In a MVC-based application, the "Controller" module is used to accept 
operations from users to modify the data within models, and therefore controls interactive behavior 
among different models in a system. Eastman suggested that topologies are the mathematical 
relationships and fundamental definitions of parametric models in BIM [4]. At an early design stage, 
topological relations expressing design intentions are usually abstract, and may consist of enclosure, 
extension, and concentration of indoor/outdoor spaces and building masses [6]. Topological relations 
among design objects defined within the "Semantic" module can thus be regarded as the "Controller" 
of design intentions. 

 
The Geometric Modules as Validating Views of Design Intensions 
Since Grasshopper aims to generate 3D models through given algorithms, it seems unnecessary to add 
other geometric functions. To ensure visual validation of whether a design intention has been 
accomplished, however, it should provide more visual clues for users, such as textual and numerical 
tags and colored previews. The final module of STGƒ is the "Geometric" component, which can validate 
views of design intentions. In an MVC-based application, a "View" module is used to display 
information concerning a retrieved "Model" and the results of "Controller." In architectural design, 
architects always need visual feedback to validate the content of semantic ontologies or topological 
behaviors of generative algorithms. By helping users to validate algorithms, immediate visual feedback 
concerning generative algorithms is one of the most attractive features of Grasshopper. For design 
intentions other than geometric features, especially in the case of invisible or non-obvious intentions 
like outdoors spaces or mathematical ratios, geometric features can not only be input as parameters in 
generative algorithms, but also be generated for the visual validation of design intentions. The 
"Geometric" module of STGƒ therefore aims to demonstrate how to input geometric objects from 
Rhino into the STGƒ "Semantic" and "Topological" modules, and how to provide visual clues for the 
validation of users’ design intentions. 

 
Initial Implementation of STGƒ 
By providing rewritable example scripts and adjustable algorithmic modules, which are editable 
clusters of algorithmic components in Grasshopper, the STGƒ aims to help architects to explore their 
abstract intentions beyond geometric features at early design stages. For example, "community-
friendliness" issues have been the design subjects in Taiwan's architect qualification exam for three 
consecutive years (Fig. 1). "Community-friendliness" issues concern how to arrange a building to form 
high-quality spaces for facilitating community activities. However, the outdoors spaces shaped by a 
building and its surroundings are usually ignored in the semantic ontology of BIM or IFC. In addition, 
what features of a outdoor space can facilitate community activities still leave much room for 
architects to interpret.  

 

 
Fig. 1: Three different site contexts concerning "community-friendliness" issues in an architect 
qualification exam in Taiwan: (a) an architect firm as the cornerstone of a good neighborhood in 2014, 
(b) a community-friendly elementary school in 2015, and (c) a community library and public spaces in 
2016. 
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As an example, a candidate may propose the idea of preserving existing trees in order to rapidly form 
a static leisure park for seniors, but another candidate may suggest the installation of more game and 
sports equipment in order to improve the health of both seniors and children. If such design 
intentions can be represented in OWL, then the logic reasoners in Protégé can help architects to 
validate the ontology. By applying the semantic components of STGƒ, architects can hook semantic 
ontologies from Protégé with Grasshopper’s generative algorithms. By the help of Protégé, STGƒ allows 
abstract design intentions to be converted into a computational format, enabling them to be input as 
the parameters of generative algorithms. 

Although ontological techniques can validate the conceptual consistency of design intentions, they 
cannot guarantee that all instances of semantic concepts will also comply with the necessary 
properties. For the idea of preserving existing trees, it is necessary to calculate the correlations 
between the existing trees and the instance of the park in order to determine whether those existing 
trees are located within the scope of the park. As a consequence, in addition to their definitions of 
conceptual classes within an intentional ontology, topological relationships must also address more 
feature properties in specific instances. By applying the topological components of STGƒ, which are 
rewritable example scripts and adjustable algorithmic modules, STGƒ can help architects to develop 
more generative algorithms for exploring topological relations of their design intentions.  

To ensure visual validation of whether a design intention has been accomplished, however, 
Grasshopper may need more visual clues for users, such as textual and numerical tags and colored 
previews. The geometric components of STGƒ therefore aim to demonstrate how to input geometric 
objects from Rhino into the STGƒ "Semantic" and "Topological" modules, and how to provide visual 
clues for the validation of users’ design intentions. As an example, the selection of the parking 
entrance is based on two design intentions: (1) traffic on the narrower street is relatively small, and (2) 
the entrance close the start point of the construction line can reduce pedestrian conflicts. After 
implementing those intentions in STGƒ, users can input the contour of the site and the borderlines of 
the streets around the site in order to generate a tag on the site for suggesting the location of the 
parking entrance into the site (Fig. 2). 

 

 
 
Fig. 2: An example algorithm is used to select a parking entrance into the site for reducing traffic 
conflicts. 

One of the major obstacles to applying generative modeling is that stakeholders cannot understand 
the generative algorithms, especially when algorithms are too complex to be explained even by the 
script authors themselves. The "Semantic" and the "Topological" modules can therefore help to 
associate algorithms developed within generative modeling tools like Grasshopper with the 
architectural design intentions that were applied within those algorithms. Based on the "geometric-
topological-geometric" pattern, this paper proposes an algorithmic framework termed STGƒ for 
modeling design intentions that go beyond geometric forms. 

Conclusions: 
While critics have suggested that the use of generative tools can result in the over complexity of 
simple things [2], generative algorithms should potentially be able to go beyond geometric intentions. 
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However, the programming and information technology knowledge usually becomes the biggest 
obstacle for architects who wish to implement algorithms of their intentions beyond geometric 
knowledge. As software frameworks can dramatically simplify and accelerate the development of an 
application, the STGƒ framework proposed in this paper can also help designers to simplify and 
accelerate the development of generative algorithms used in parametric architectural design. 

One purpose of the MVC pattern is to divide programming tasks of a complex system into 
independent objects. The STGƒ framework divides parametric design into three algorithmic procedural 
steps, and can implement generative algorithms by different designers/scripters. As building projects 
become more complex, instead of requiring architects to wear many hats associated with other 
domains, it will be better to hand over programming/scripting tasks to professional scripters, and 
performance optimization to MEP engineers. It is therefore time to embed architects’ design intentions 
in the parameters, variables, and algorithms used in parametric architectural design. 
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