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Introduction: 
CAD model reuse boosts product development process [5]. However, most of the CAD models are not 
well reusable. Even with the visually the same resulting CAD geometry, the modelling procedures and 
operations applied might be quite diverse. Without standard way of model construction, it is hard to 
modify CAD models to cater to new design requirements. In some cases, even a single alteration of 
certain value in the model could render the whole part unusable, which is even worse if it is not 
visually identifiable. The reason behind it, the authors believe, is that the non-optimal and implicit 
modelling strategy. In order to reach a more robust CAD modeling strategy, a better understanding of 
the nature of the CAD model construction is necessary. The authors believe the key lies in the 
understanding of modeling intents. Modeling intents are what behind the CAD model construction, 
i.e., what users wish the model to be. There are two levels of modelling intents, i.e., the reasons why 
models are constructed in certain ways to, firstly, conform to the physical structure, and secondly, 
comply with the functional design considerations. One of the generally-expected structural modeling 
intents is that minor (auxiliary) features should be built on top of major features that contribute to the 
general shape of the product. Understanding modelling intents is critical. If changes are to be made to 
the model, it is better to know how and why the model has been constructed such that when the 
changes are carried out the model will at least be able to regenerate. If the intents of model 
construction are unknown, it would be difficult to change the model properly due to its inner 
parametric and geometric associations [11-12]. Moreover, by inspecting modelling intents, engineers 
can see whether the model has been constructed robustly.  

Main Idea: 

In order to unveil modelling intents in CAD models, the analysis of applied features is a way to go, 
more specifically, analysis of feature dependencies [1]. Modeling intents are reflected through the way 
how features are applied in the model construction process. Users might apply the same set of 
features to construct visually identical product geometry with different modelling procedures, which 
results in the differences of feature dependencies. So it is not enough to analyze the shape 
information. The approach in this research is to retrieve implicit feature dependencies from a CAD 
model to construct its feature association graph from which further analysis is carried out. An 
algorithm is developed to retrieve feature information and to construct the graph automatically. The 
graph provides a more organized view towards the applied modelling procedures.  

It is observed that the feature association graph is directed and acyclic, which is called Acyclic and 
Directed Feature Dependency Graph (ADFDG), where the set of nodes, or verticesV , are the features 
and edges E  depict the feature dependencies. Moreover, due to the nature of feature modeling, 
feature dependencies in ADFDG have other characteristics; they are non-reflexive, i.e., a feature cannot 
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depend on itself, feature dependencies are nonsymmetrical, i.e., two features cannot mutually depend 
on each other. Further, feature dependencies are transitive, i.e., if feature c depends on feature b  and 

feature b  depends on feature a , then feature c  also depends on feature a [1],[10].  

There are multiple aspects of the ADFDG that can be analyzed to unveil modeling intents. Current 
research focusses on finding the critical features in ADFDG to provide engineers with a starting point 
to examine the rightfulness of modeling intents reflected by the model construction. Centrality related 
metrics, assessing each node’s involvement in the walk structure of a graph [2],[4], are applied to 
characterize the properties of feature dependency graphs. There are local measures, e.g., degree 
centrality, and global measures, in the sense that they measure the centrality of the specific node 
relative to the rest of the network, e.g., closeness, betweenness, and eigenvector centrality [2],[4],[8]. 
Degree centrality measures how many edges are connected directly to each node in the graph. In a 
direct graph, degree centrality could be further categorized into in-degree and out-degree centrality. 
The larger the number of in- or out-connecting edges is, the bigger the in- or out-degree value is. The 
value could be normalized by dividing by the maximum possible number of the connections. 
Betweenness centrality is a measure to quantify the number of times a node acts as a bridge along the 
shortest path between two other nodes, the value of which can also be normalized. Closeness 
centrality of a node in the graph is the reciprocal of the length of the total shortest path between the 
node and all other nodes in the graph. Eigenvector centrality [3] measures the importance of a feature 
node by considering its neighbors’ connectivity (or influence) as well as their subsequent downstream 
neighbors. The values of interests are contained in the eigenvector corresponding to the largest 
eigenvalue. The formulas for calculating the above mentioned centralities could be found in [2-3],[8-9]. 
Another variation of eigenvector centrality, which has been applied in link analysis using hubs and 
authorities in information networks and World Wide Web [7] and in determining the design 
domination weights and design subordination weights in the dependency analysis of the design 
elements in product development [6], is to calculate the dominant eigenvector, instead of the 
adjacency matrix of the graph, of the multiplication of adjacency matrix with its transpose. 

 

 

 

The general framework of current research is presented in Fig. 1. It starts with a constructed feature-
based CAD model with all the model history and feature information. Then feature information is 
extracted from the model with API programming to construct the ADFDG based on the algorithm 
introduced in Fig. 2. With the ADFDG at hand, visualization and centrality analysis of the graph could 
be carried out. The algorithm in Fig. 2 is designed based on how feature information is stored in the 
CAD models. A map, a type of associative container that stores key-value pairs, is used as the 
adjacency list representation for the graph. Note that some features are created automatically by the 

Fig. 1: General framework of current research 
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CAD system during the model construction. The resulting graph might show more feature nodes than 
in the part navigator, where only explicitly applied feature operations are presented. 

 

 

 

 

 

 

 

In this paper, a connection rod model in an inner combustion engine design is taken as an example to 
illustrate our proposed method. Fig. 3 gives the geometry of the connection rod (b), its modelling 
history (a), and the corresponding visualization of its ADFDG (c).  

 

 

 

 

The results of different centrality analyses are provided in Fig. 4. Fig. 5 gives the correlations of 
different centralities, where some key features are numbered and their correlation values are given as 
c . It is found that the connection rod model has a few dominant features. Except for the betweenness 

(a) 

(b) 

(c) 

Algorithm to create adjacency list representation of ADFDG                      
Initialization:  Given a feature-based CAD part p , an empty set { }V =  , and 

an empty map { }A =   

for each feature f  in the part p  

      add feature f  ID  *f  to the set V  

for each feature *
if  in the set V , do 

      create an empty list = [ ]L  

      for each immediate child feature cf  belonging to the feature f , do 

 insert the child feature ID, *cf , into list L  

      insert the pair { *f , L } into the map A  

return the map A  
Fig. 2: Algorithm to construct ADFDG from feature-based CAD model 

Fig. 3: A connection rod case study with (a) model history, (b) CAD model, (c) visualization of its 
ADFDG. 
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centrality, other three centralities agree that the most critical features are the datum feature 1, and the 
extrusion feature 4. It is reasonable for those three agreeable centralities because these two identified 
features are constructed in the beginning of the model history and they generate the overall shape, on 
top of which many other features are built. This can be seen as a characteristic of the connection rod, 
i.e., one dominant shape. It is predicable that for some other mechanical parts one might found more 
dominant features upon which smaller features are built. Hence, the resulting ADFDG and centrality 
analyses would be totally different. It could be said that on the one hand centrality analysis helps to 
reveal critical features in the model construction, on the other hand helps to identify the 
characteristics of the model. 

 

 

 

 

 

The graphical representation of the feature dependencies provided by ADFDG offers engineers a more 
organized view toward the model construction, where feature dependencies are easily seen. Many 

Fig 5: Correlations for the centralities of connection rod case study. 

Fig. 4: Centralities of the connection rod case study. 
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graph properties are exploitable to give insights in understanding modeling intents for individual 
model. Centrality analyses of ADFDG reveal the information of which features are critical from the 
perspective of network topology. By looking at the identified critical features, engineers can ponder 
whether it is reasonable based on their engineering judgements, i.e., whether they match the expected 
major features. As far as the connection rod case study is concerned, the identified major features are 
aligned with expectations.  

Conclusions: 
This work proposes an intelligent knowledge discovery scheme to unveil engineering modelling intents 
in CAD models via centrality analysis with a type of automatically-generated feature dependency 
graph. An algorithm has been developed to retrieve feature dependency information from CAD models, 
instead of consulting designers or engineers to build up the network for product features, and to 
generate an ADFDG for both visualization and analysis purposes. Posterior examination of the 
modelling intents could also reveal engineering constraints applied in those CAD models by analyzing 
the ADFDG. Current research focuses on one important aspect of the graph properties, i.e., centrality 
analysis. Potentially much more exploitable engineering knowledge can be revealed through this 
approach; this prospect warrants more future research. For example, more discoveries can be expected 
in the direction of merit comparison of different feature embodiment solutions. In addition, more 
effective parameterization of engineering modeling can be derived by comparing different feature 
structural-trees even when the visual geometric models seem to be the same. 
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