
138 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 138-142 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

 
 

Title: 
Evaluation of the OptiX Ray Tracing Engine for Machining Simulation 
 
Authors: 
Marc Jachym, marc.jachym@ens-paris-saclay.fr, Paris-Saclay University 
Sylvain Lavernhe, sylvain.lavernhe@ens-paris-saclay.fr, Paris-Saclay University 
Christophe Tournier, christophe.tournier@ens-paris-saclay.fr, Paris-Saclay University 
Charly Euzenat, charly.euzenat@ens-paris-saclay.fr, Paris-Saclay University 
Pierre-Alain Boucard, pierre-alain.boucard@ens-paris-saclay.fr, Paris-Saclay University 
 
Keywords: 
Machining simulation, GPU computing, CUDA architecture, OPTIX, ray tracing. 
 
DOI: 10.14733/cadconfP.2017.138-142 

Introduction: 

In molds and dies industry, simulation of machining process is mandatory to validate the tool path 
generated with the CAM software before launching the production of parts with very high added value. 
Indeed, machining operations including roughing, reworks and finishing are particularly long, especially 
for large size parts as for example in the automotive industry. Thus, the appearance of defects in the 
final stages of the process has a dramatic impact on manufacturing companies. CAM software editors 
therefore provides cutting simulation applications that allow to validate the paths from a macroscopic 
point of view, i.e. to test the presence of collisions. However, these simulations don’t incorporate any 
features of the actual process likely to deteriorate the surface finish during machining operations. 
Finally, these simulations do not provide the accuracy required within a reasonable time or to select an 
area in which the user would like to have greater precision. On the other hand, high-performance 
simulation prototype software covering the preceding shortcomings are developed in laboratories, but 
requires significant computer resources. 

Many methods have been published in the literature to perform machining simulations. Some of 
them are based on a partition of the space whether by lines [6], by voxels [5] or by planes [10], other are 
based on meshes [3]. Previous works have shown that it is possible to simulate the resulting geometry 
of the surface with Z- or N-buffer methods applied to a realistic description of both the tools and the 
machining path in a few minutes [7]. Simulation results are very close to experimental results but the 
simulated surfaces have an area of a few square millimeters with micrometer resolution. Therefore, to 
overcome the limits in terms of computing capacity, some works deal with the use of GPGPU (general-
purpose computing on graphics processing units) and especially Nvidia GPU (graphics processing units) 
and CUDA (Compute Unified Device Architecture) technology in the field of manufacturing simulation 
[4,8]. In this context we have developed a software called “SIMSURF1” in order to simulate very quickly 
a selected machined area at different scales chosen by the user [1]. This tool is very fast and relies on 
GPU/Cuda technology or many CPU cores [2]. However, the development of such applications requires 
an extended and deep knowledge of these architectures. Low-level CUDA library has to be used and 
every aspect of the multi GPU-core architecture on which CUDA is based has to be managed, from the 
distribution of the parallel calculations on the cores to the memory exchanges between the CPU and the 
GPU. 

This is why the use of an engine such as Optix, also offered by Nvidia, would facilitate the 
development of high-performance ray tracing applications [9]. Thus, the proposed “SIMSURF2” approach 
aims at taking advantage of the Optix engine in order to facilitate the writing of a machining simulation 
software based on the GPU parallel calculation platform. With Nvidia Optix, and with the specialized 

http://www.cadconferences.com/
mailto:marc.jachym@ens-paris-saclay.fr
mailto:sylvain.lavernhe@ens-paris-saclay.fr
mailto:christophe.tournier@ens-paris-saclay.fr
mailto:charly.euzenat@ens-paris-saclay.fr
mailto:sylvain.lavernhe@ens-paris-saclay.fr


139 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 138-142 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

subset Optix Prime, gains are expected regarding the software development speed as well as regarding 
the optimization in the use of the CUDA architecture which, in turn, could accelerate the whole 
machining simulation process. We propose in this article to compare the performances of the OptiX 
engine with the developments previously achieved in “SIMSURF1” and updated here as an 
implementation for NVIDIA Tesla® K40 GPU. The rest of the paper is organized as follows: the 
computation algorithm and the low-level approach used in “SUMSURF1” is resumed in section 2, Optix 
engine is described in section 3 and section 4 is dedicated to the experimental investigations and 
benchmarking of both approaches.  

Computation algorithm and CUDA architecture: 

The computation algorithm relies on the Zbuffer method which consists in partitioning the space around 
the surface to be machined in a set of lines, which are equally distributed in the x-y plane and oriented 
along the z-axis. The machining simulation is carried out by computing the intersections between the 
lines and the tool along the tool path. The geometry of the tool is modeled by a triangular mesh including 
cutting edges, which allows to simulate the effect of the rotation of the tool on the surface topography. 
The tool path is either a 3-axis tool path with a fixed tool axis orientation or a 5-axis tool path with 
variable tool axis orientations. In order to simulate the material removal, all the intersections with a 
given line are compared and the lowest is registered. The complete simulation requires the computation 
of the intersections between the N lines (~1.e6) and the T triangles (~1.e4) of the tool mesh at every tool 
posture P (~1.e6) on the tool path. Thus simulations with 1.e16 potential intersections to compute are 
commonly encountered.  

The strength of the CUDA programming model lies in its capability to achieve high performance 
through its massively parallel architecture. In order to achieve high throughput, the algorithm must be 
divided into a set of tasks with minimal dependencies. Tasks are mapped into lightweight threads, which 
are scheduled and executed concurrently on the GPU. The 32 threads within a same warp are always 
executed simultaneously; maximum performance is therefore achieved if all the 32 threads execute the 
same instruction at each cycle. Warps are themselves grouped into virtual entities called blocks; the set 
of all blocks forms the grid, representing the parallelization of the algorithm. Threads from the same 
block can be synchronized and are able to communicate efficiently using a fast on-chip memory, called 
shared memory, whereas threads from different blocks are executed independently and can only 
communicate through global (GDDR) memory of the GPU. The number of threads executed 
simultaneously can be two orders of magnitude larger than on a classical CPU architecture. As a 
consequence, task decomposition should be fine-grained opposed to the traditional coarse-grained 
approach for CPU parallelization. 

The basic algorithm consists in determining whether there is an intersection between a line and a 
triangle associated to a tool posture. Given these three variables on which the algorithm iterates during 
the sequential computation, there are numerous possible combinations to affect threads and browse 
the set of lines, triangles and positions. Only one possibility is used hereafter which is the most 
appropriate for macro scale simulations [1]. Each thread is assigned to a position of the tool and applies 
the Z-buffer algorithm for every triangle of the tool mesh for this position. The granularity of tasks is 
high: if the number of triangles to be processed is large, each thread will run for a long time. If the 
computation time between threads is heterogeneous, some threads of a warp may no longer be active, 
and therefore the parallelism is lost. A thread may affect the cutting height of several lines so a line can 
be updated by multiple threads and global memory access conflicts appear. Atomic operations proposed 
by CUDA are then used to allow concurrent update of the height of the lines. 

 

Optix ray tracing engine: 
Nvidia Optix is an engine for ray tracing 3D-rendering. It allows the developer to concentrate on the 
objects in a scene whose geometry is defined by the algorithms for the ray-object intersections and on 
the behavior of the light when it encounters some material. Those elements are the entry points to the 
ray-tracing parallel calculation engine that executes on the CUDA architecture (Fig. 1). The Optix engine 
is based on acceleration structures, which are hierarchies of bounding boxes, to determine which of the 
scene areas are empty and do not need any calculation. Optix Prime is an Optix's subset which is 

http://www.cadconferences.com/


140 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 138-142 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

dedicated to the high-speed calculation of intersections between rays and triangle meshes. There is no 
notion of material properties in Optix Prime and thus, it has nothing to do with optic rules and 3D object 
rendering. Rather, it provides a hopefully optimized way to use a hidden acceleration structure suited 
to triangle meshes and to perform a high-speed rays-triangles intersection on the underlying CUDA 
architecture. By hidden, we mean hidden to the software developer who is freed from researching 
methods for reducing the number of possible intersections that the GPU will have to calculate. 

Within “SIMSURF1”, the software programmer has to devise by himself clever methods to determine 
empty areas in the scene in order to avoid that the GPU would have to calculate every possible 
intersection between any ray and any triangle. Within “SIMSURF2”, the programmer has to choose 
between different possibilities regarding acceleration structures and traversal methods, whether he has 
to manage static vs dynamic scenes or whether his objects are defined with geometric formulas or 
meshes. Optix Prime simplifies this greatly because the best possible choices, regarding Nvidia 
experience in acceleration structures and traversal algorithms, have been made for a static scene based 
on triangle meshes. 

 
Fig. 1: OptiX engine process overview. 

 
The calculation of the acceleration structures is the slowest stage of the process and, with previous 
Optix Prime versions, an acceleration structure has to be built at every step of the loop even if the 
geometry of the tool will not be changed but is simply moved along the planned path. This problem has 
been addressed with Optix Prime 3.9 which offers a new possibility called ‘instancing’. From a model 
object; in the sense of Object Oriented Programming; which associates a triangle mesh and its dedicated 
acceleration structure, ‘instancing’ composes complex scenes using existing triangle models. Then Optix 
Prime is able to create a global acceleration structure for the whole scene without duplicating the 
elementary models' description. The programmer has to create a memory structure to associate each 
instance of a model object in the scene with a transformation descriptor, i.e. a translation, a rotation 
or/and a scaling matrix. The fact that the basic model description is not duplicated in memory allows 
to process much bigger path buffers. 

Experimental investigations: 
Several test cases (fig. 2) have been investigated in 3 or 5-axis, in roughing (numerous air paths) and 
finishing (numerous postures) with variations in the number of tool postures on the tool path and 
triangles in the mesh. The Z-buffer is computed with a grid of 1024x1024 lines covering the X-Y 
trajectory range. NC simulations have been carried out with a Nvidia K40 GPU card with the following 
technical characteristics: 0.745 GHz, 2880 CUDA cores, 1.43 Tflops in double precision, 4.29 Tflops in 
single precision; bandwidth 288GB/s. Simulations have also been run on a CAD/CAM commercial 
software in order to establish a reference. Results are gathered in table 1. 

 

http://www.cadconferences.com/


141 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 138-142 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

   
 
 

Fig. 2: Test parts (blade, ski mask mold and structural part). 

 
In cases 1 and 3 which are 3-axis roughing simulations, ‘SIMSURF2’ is faster which is a positive outcome. 
In case 4 and 5, the results of ‘SIMSURF2’ are disappointing compared to other 3-axis cases. In case 4, 
the ratio between the machined surface area and the tool dimension is low. This implies that a lot of 
intersections will be computed between triangles and lines. Here ‘SIMSURF1’ is more than twice as fast 
as ‘SIMSURF2’. In case 5 the ratio machined surface area / tool dimension is very high and the path is of 
about 27M cutter locations. We could therefore describe this simulation as macroscopic. In this case, 
the number of positions is almost 1000 times larger than the maximum number of threads that could 
theoretically be executed (30720) which is rarely the case due to memory limitations. This involves 
additional workload for the task scheduler CUDA as well as serialization of the computation. Two 
different tests have been carried out. One with our usual sampling density of 1024 x1024 rays and 
another one, more realistic, of 10 000 x 10 000 rays (Table 2). In both cases ‘SIMSURF1’ is more than five 
times faster than ‘SIMSURF2’. 

For 5-axis simulations including translations and rotations of the tool (case 2), ‘SIMSURF1’ is still 3 
times faster than ‘SIMSURF2’. It seems that the generation within Optix of the scene including rotation 
of the instances of the tool is time consuming. 

 

Case Tool 
geom. 

Triangles 
T 

Postures 
P 

Simsurf1 
(ms) 

Simsurf2 
(ms)  

Speed-Up CAM 
(ms) 

1. Blade roughing Torus 25904 62576 1166 812 0.7 25000 
2. Blade finish. 5 axis Sphere 12482 53667 1703 4925 2.95 245000 
3. Mask roughing Torus 25904 345848 2986 1272 0.42 380000 
4. Mask finish. Sphere 12482 3015072 11314 24671 2.5 450000 
5. Aero finishing Sphere 12482 27425026 3698 21865 5.88 2520000 

 
Tab. 1: 32 bits computation times on test cases for a 1024x1024 Zbuffer with K40 GPU. 

 

5. Aero finishing Sphere 12482 27425026 30961 163565 5.28 2520000 

 
Tab. 2: 32 bits computation times on test case for a 10000x10000 Zbuffer with K40 GPU. 

 
Conclusions: 
This paper presents a comparison of two ray-tracing GPU implementations for NC simulations. The first 
approach is based on the direct use of CUDA which requires a rather steep learning curve and expertise 
to achieve high performances. The second one is based on the Optix ray tracing engine which provides 
simple application programming interfaces to compute rendering of machining scenes. This approach 
is the simplest to implement and seems to be very competitive in 3-axis machining for macroscale 
simulations. However, 5-axis configurations and large machining scenes remain a problem for the Optix 
engine even if simulation times are quite reasonable. These results are very promising and will be 
confirmed by additional tests. 
 

http://www.cadconferences.com/


142 
 

Proceedings of CAD’17, Okayama, Japan, August 10-12, 2017, 138-142 
© 2017 CAD Solutions, LLC, http://www.cad-conference.net 

 
 

Acknowledgements: 
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU 
used for this research as well as the support of the Farman Institute (CNRS FR3311). 
 
References: 
[1] Abecassis, F.; Lavernhe, S.; Tournier, C.; Boucard, P-A.: Performance evaluation of CUDA 

programming for 5-axis machining multi-scale simulation, Computers in Industry, 71, 2015, 1-9. 
http://dx.doi.org/10.1016/j.compind.2015.02.007 

[2] CUDA C Programming Guide, NVIDIA, 2012 http://developer.nvidia.com/cuda/ 
[3] He, W.; Bin, H.: Simulation model for CNC machining of sculptured surface allowing different levels 

of detail, The International Journal of Advanced Manufacturing Technology, 33, 2007, 1173-1179.  
http://doi.org/10.1007/s00170-006-0543-1 

[4] Inui, M.; Umezu, N.; Shinozuka, Y.: A comparison of two methods for geometric milling simulation 
accelerated by GPU. Transactions of the institute of systems, Control and Information Engineers, 
6 (3) 2013 95–102. 
http://doi.org/10.5687/iscie.26.95 

[5] Jang, D.; Kim, K.; Jung, J.: Voxel-based virtual multi-axis machining, International Journal of 
Advanced Manufacturing Technology, 16, 2000, 709-713. 
http://doi.org/10.1007/s001700070022 

[6] Jerard, R.; Drysdale, R.; Hauck, K.; Schaudt, B.; Magewick, J.: Methods for detecting errors in 
numerically controlled machining of sculptured surfaces, IEEE Computer Graphics and 
Applications, 9 (1), 1989, 26-39. http://doi.org/10.1109/38.20331 

[7] Lavernhe, S.; Quinsat, Y.; Lartigue, C.; Brown, C.: Realistic simulation of surface defects in 5-axis 
milling using the measured geometry of the tool, International Journal of Advanced Manufacturing 
Technology, 74 (1-4), 2014, 393-401. http://doi.org/10.1007/s00170-014-5689-7 

[8] Morell-Gimenez, V.; Jimeno-Morenilla, A.; Garcia-Rodrõguez, J.: Efficient toolpath computation 
using multi-core GPUs, Computers in Industry 64 (1), 2013, 50-56.  
http://doi.org/10.1016/j.compind.2012.09.009 

[9] Parker, S.; Bigler, J.; Dietrich, A.; et al, OptiX: a general purpose ray tracing engine, ACM 
Transactions on Graphics, Proceedings of ACM SIGGRAPH, 2010, 29(4), 2010. 
http://doi.org/10.1145/1778765.1778803 

[10] Quinsat, Y.; Sabourin, L.; Lartigue, C.: Surface topography in ball end milling process: description 
of a 3D surface roughness parameter, Journal of Materials Processing Technology, 195 (1–3), 2008, 
135-143. http://doi.org/10.1016/j.jmatprotec.2007.04.129 

 

http://www.cadconferences.com/
http://dx.doi.org/10.1016/j.compind.2015.02.007
http://developer.nvidia.com/cuda/
http://doi.org/10.1007/s00170-006-0543-1
http://doi.org/10.5687/iscie.26.95
http://doi.org/10.1007/s001700070022
https://doi.org/10.1109/38.20331
http://doi.org/10.1007/s00170-014-5689-7
http://doi.org/10.1016/j.compind.2012.09.009
http://doi.org/10.1145/1778765.1778803
http://doi.org/10.1016/j.jmatprotec.2007.04.129

