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Introduction: 
In the last few years, the fast progresses of scanning technologies have produced a great increment of 
resolution of 2D/3D images, measured by the number of distinct pixels in each dimension that can be 
displayed on a display device. This growth of resolution is about one order of magnitude (10 times) in 
each single spatial dimension, and therefore of second order in the number of pixels in 2D and of 
order three for the number of 3D voxels. Hence, the sectional image of a neuronal or vessel structure 
in the brain, depicted in the past --- at maximum resolution --- by few pixels in its average section, say 
less than 10x10, is currently reproduced by the newest imaging technologies as measuring more than 
ten times that number. 

In the past years, aiming to accurately describe a curved shape, we needed to consider the voxels 
as the elements of a discrete intensity field, and to compute a triangulated equi-surface of the field, in 
order to get some adequately approximated boundary representation of the studied structures. The 
well-known “marching cubes” algorithm was the typical computational method used for this purpose 
[2], together with its several variants. 

Conversely, in this research we aim to experiment a novel decompositive approach [3] to the 
computation of boundaries of biological structures to be extracted from extreme-resolution three-
dimensional images.  The new method is based on the topological extraction of boundaries of “chains” 
of image elements, as performed by boundary and coboundary maps between the linear spaces 
generated by the cell decomposition of the image, possibly followed by a non-iterative Laplacian 
smoothing of the extracted surface, in order to smooth-out the resulting model.  

This method benefits by several advantages with respect to current marching cubes algorithms, 
and in particular provides a topologically exact model representation, at any available resolution of the 
data: the extracted geometric model always enjoys a closed boundary surface, allowing for an exact 
separation of the interior from the exterior of the structures, independently on the geometrical or 
topological complexity of the boundary. Also, it is extracted through a single algebraic operation of 
product between the compressed binary matrix of the operator, and the coordinate (binary) 
representation of the chain, spanning any subset of the voxels (or pixels) of the image.  

The results of the proposed method with respect to those provided by current marching-cubes 
implementations are clearly demonstrated by the images shown in the following pages, coming (for 
now) from very preliminary experiments.  In few months we will be able to make a full demonstration 
of the novel method introduced here. 
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Aims and Methods: 
The aim of this research is the adaptation of the LAR extraction of topologically exact geometric 
models of biological structures (see [3]) to hierarchical multi-resolution computational environments 
for real-time interaction with big geometric and imaging data of extreme-resolution, like the ones 
provided by PIDX/ViSUS systems [4,5].  A very general procedure of this kind is shortly described in 
the following of this section. The representation scheme introduced by LAR, the Linear Algebraic 
Representation of topological structures is discussed in Reference [1]. 
 
The main idea 
In few words, we preprocess the data at maximum resolution, so extracting the best possible geometric 
model providing topological correctness, and transporting the model at inferior resolutions, while 
guaranteeing the invariance of topology between models of less weight.  

Our preprocessing algorithm can therefore be split into (a) the extraction of geometric models at 
maximum resolution level, say at level m; (b) the model transport and compression, with invariant 
topology, between levels k and k-1, with 0 ≤ k-1, k ≤ m. 

Let assume that n3 is the number of voxels provided at the maximum resolution level of the image 

data, corresponding to the 3D images (n3 = 8k × 8k × k = 64k3, with k = 1024) produced by electronic 
microscopes of extreme resolution available nowadays.   
 
 

 
 

Fig. 1: The same portion of 3D data (micro-vessels between neurons) with LAR-based model extraction 
and with Marching-Cube extraction, using the same threshold value 8. 
 

 
 

Fig. 2: Two close-up of the same model. Notice the topological correctness: every connected component 
(even noise) is closed (without boundary). 
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In the ViSUS progressive multi-resolution environment [5] the number of voxels, indexed out-of-
core by fractal curves, is divided by a factor 8 (i.e. 23) at each resolution level.  
 
Model extraction at maximum resolution 
The whole 3D image, as generated by the electron microscopy, is first subdivided into a grid of 64k3 
bricks of data. The closed and not necessarily connected boundary surface of the interesting image 
segments is extracted in parallel from 1283 chunks of data, using the divide-et-impera LAR-based 
method described in Reference [2]. For this purpose, the matrix of the boundary operator between 

linear chain spaces ∂3: C3 → C2 is computed, once and for all, and used to multiply, in parallel, the 
(binary) coordinate representations of the interesting chains (image segments) in each brick.  

The result is a collection of quasi-connected quad surfaces, in the sense of algebraic topology, that 
we call pipework in the following. Every pair of adjacent pipework is then glued on the common side of 
their bricks, by just removing the quads lying on the side. 
 
Multi-resolution model transport and compression 
The multi-resolution real-time imaging environment ViSUS requires that data to stream towards the 
system GUI are referred to new compressed bricks at k-1 resolution level, resulting from the 
unification and compression of 23 bricks at resolution level k. 
 
 

 
 
Fig. 3: Some close-up of standard marching-cube extraction at the same threshold level. Notice the 
topological errors: most of surfaces are open (look at the two colors—blue and green—for interior and 
exterior surface faces). Great part of reconstructed data at this very low threshold level is just plain 
garbage, whereas the extraction at higher thresholds, i.e. of greater structures, is pretty good. 
 
Therefore, in the hypothesis of an image space 8k × 8k × k, the gluing of no more than 4 pipework will 
take place, allocated inside a single new brick of size k3. In the case of an image space of size (8k)3 the 
brick gluing will conversely apply to 23 bricks.  

Let us consider the 4 bricks case, for the sake of discussion simplicity. 
Two operations are performed independently: (a) pipework translation and uniform scaling, in 

order to refer back the model coordinates to the image normalized space [0,1024]3; and (b) pipework 
simplification, in order to keep under control the quantity of geometric data that must be posted to 
the GPUs to maintain the refresh rate in accord with real-time visualization requirements. 

The isometric step is pretty pointless, and just transforms the model coordinates from integer to 
double, while maintaining invariant the aspect ratio of the geometric model. The compression step is 
more algorithmically interesting, since it is a very simple application of algebraic topology methods 
(SpMV and SpMSpM multiplications, and binary vector differences) and reduces by a factor 0.5 the 
number of boundary cells (remember they are quadrilaterals) in each pipework, while maintaining 
invariant their Euler characteristic.  
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The compression step operates on each pipework as follows.  A matrix of ∂2 operator on each 
pipework space is built. This one is now dependent on the 2- and 1-cells of the pipework itself, 
considered as a two-dimensional topological space. An iterated application of (∂2 o ∂2

T) and (∂2
T o ∂2) 

operators, intermixed with progressive accumulation of traversed 1- and 2-cells, will cover every 
pipework with a sort of intrinsic coordinate curves, made by 1-cycles and in a later step used to 
alternatively maintain or remove the 1-cycles, depending on their either even or odd “coordinate” 
value, respectively. The coboundary 2-chains of the removed “coordinate” 1-cycles are replaced by a 
half number of 2-cells with same boundary. This compression stage will halve, in average, the size of 
every pipework, and in general, the quantity of data streamed to the user at every lower multi-res-
olution level, without changing the Euler characteristic and hence the topological genus of the 
compressed pipework components. 

Conclusions: 
In this research we are experimenting with a novel extraction of geometric models of biological 
structures, from huge 3D imaging data provided by recent electron microscopy at extreme resolution, 
using fast algebraic methods.  

This approach, that currently just started, is already producing very interesting results, primarily 
because it may take into account the exact topology of data at maximum resolution, and transport it 
without topological errors to inferior resolutions, providing the neurobiologist with real-time accurate 
interaction with intricate biological structures.  

The purpose of this kind of research is to provide the neurobiologist a tool for long-distance 
connectome reconstruction, i.e. for the building of a comprehensive map of neural connections in the 
brain, based on the tracing and reconstruction of their cellular connections. Our first experiments 
show that LAR methods seem to work much better than consolidated types of algorithms, aka 
marching-cubes, in analyzing extreme-resolution images.  

We hope that greater evidence of the merits of this approach can be given in the next few months. 
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