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Introduction: 

It has been a long desire and a long effort of the computer graphics and geometric design 
community to have a nice approach to construct smooth surfaces from meshes of arbitrary topology. 
A nice approach should satisfy the following requirements: 

• simple: no linear or non-linear system needs to be solved, 

• local: changes to a control mesh only affect the resulting surface locally, 

• smooth: the resulting surface is C2 everywhere, including at any extra-ordinary points, 

• convex: the resulting surface satisfies the convex hull property, 

• explicit: the resulting surface has an explicit expression of the form WMG for each patch, 
where W is a parameter vector, M is a constant matrix and G is the control point vector, so 
that surface evaluation, and computation of the first and second derivatives, normal and 
curvature at any point can be easily done from the simple representation. 

When the degree (valence) of each vertex of the given mesh is 4, the algorithm for generating 
tensor product B-spline surfaces is such a nice approach. However, for meshes not in this category, as 
far as we know, there is no such an approach reported in the literature yet, although there are 
approaches that satisfy almost all of the above requirements [1,2,3,4,5,6,7,8,9,10]. In this paper we 
propose a new smooth surface construction technique that satisfies all the above requirements. 

Previous Work: 
Many researches have been performed to improve the smoothness of a CCSS at extraordinary points. 
Prautzsch [6] modifies the subdivision scheme near extraordinary points to generate a C2 everywhere 
surface with zero curvature at extraordinary points. Zorin [9] and Levin [2] present schemes to yield a 
C2 continuous surface by blending the limit surface with a low degree polynomial defined over the 
characteristic map in the vicinity of each extraordinary point. Loop and Schaefer [9] present a second 
order smooth filling of an n-valence Catmull-Clark spline ring with n biseptic patches, with shape 
optimization for free parameters. Peters and Karciauskas [5] introduce a guided subdivision scheme 
that uses a Bezier surface as a guide for each subdivision step, and a C2 accelerated Bi-3 guided 
subdivision that uses 2^m subfaces in the m-th level for surface patches surrounding extraordinary 
points.  In the second case, they show that although this scheme is not practical for Catmull-Clark 
sufaces, it can be applied to a polar configuration. However, these solutions are not completely 
satisfactory yet. Blending the limit surface with a precomputed curvature continuous surface patch is 
not flexible in surface representation. Filling the holes with bidegree-6 patches will result in higher 
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Gaussian curvature near the extraordinary points and make the limit surface unattactive. The bi-cubic 
subdivsion scheme that generates 2^m subpatches in the m-th subdivision is also undesired. 

Basic Idea: 
The basic idea of our approach is that for every patch Pi around an extra-ordinary vertex V of degree n, 
1 ≤ i ≤ n, we construct two C2-continuous patches Si and Ti (See Figure 1) in a way such that 

• Si is C2-continuously connected with Si−1 and Si+1, except at V∞, where it is C0, 

• Si is connected to Pi at Ci with C2-continuity, where Ci is the intersection curve of Si, Ti and Pi, 

• Ti is C2-continuously connected with Ti−1 and Ti+1, 

• all Ti’s are C2-continuously connected at the extra-ordinary point V∞, 

• Ti is connected to Pi at Ci with C0-continuity. 
Note that if Si and Ti are constructed this way, then a surface obtained by linearly blending Si and Ti 

together is C2-continuous everywhere. The key is how to construct Si and Ti, for 1 ≤ i ≤ n. 

    

                                              (a) Requirements for Si                                                           (b) Requirements for Ti 

Fig. 1: Basic idea.

Construction of Si: 
For a given mesh, we assume that all the faces are quadrilaterals and all the extra-ordinary vertices are 
separated by at least two faces. If it is not the case, simply perform (at most) two Catmull-Clark 
subdivisions to reach such a status. We consider all the patches Pi around an extra-ordinary vertex V of 
valance n, 1 ≤ i ≤ n. It is well known that Pi depends on its surrounding 2n + 8 vertices only [1].  

Let G1 = [V,E1,··· ,En,F1,··· ,Fn,I1,··· ,I7]T . Vertices for Gi can be identified similarly from the notation given in 

the paper [1]. Let 

W(u,v) = [1,u,v,u2,uv,v2,u3,u2v,uv2,v3, u3v,u2v2,uv3,u3v2,u2v3,u3v3].   (1) 

Then Pi can be defined as follows. 
 

   (2) 
 
where M4 is the B-spline tensor matrix of size 16 × 16, K1,K2,K3 are constant picking matrices of size 16 × 

24, each of which picks 16 proper vertices from the mesh if one subdivision is performed on patch Pi 

(See [1]). Matrix A is the extended Catmull-Clark subdivision matrix [1] which is of size 24 × (2n + 8). 

Now define Ci(t) = Pi(cost,sint), t ∈ [0,π/2]. Let Li(r,t) = Pi(r cost,rsint). Then 
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are the first and second derivatives of Pi at Ci(t) with respect to r, respectively. Denote the limit point of 
V by V∞. It is well known [1] that 

 
 

Let R = [1,r,r2,r3], then we can construct a Bézier curve as follows such that it has the same first and 

second derivatives at Ci(t) as those of Pi at Ci(t).  

(3) 

 
 
where 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2 and Mb is the Bézier matrix. If we plug Li, Lri and Lirr into Eq. (3) and fully 
expand the formula, we get a matrix form representation for Si as follows. 

                                               (4) 
where An is a constant matrix of size 64 × (2n + 8) and An can be pre-calculated for each n. 

      

                                         (a) Construction of Ti.                 (b) Construction of Bi when n is odd. 

Fig. 2: Using Bézier curve to construct Ti. 

Construction of Ti: 
Recall that the requirements for the construction of Ti are that Ti itself has to be C2 everywhere, C2 with 

its neighboring patches Ti−1 and Ti+1 including at (0,0), and at least C0 with Ci(t). There are many ways to 

construct Ti. One simple way is to construct it as a Bézier patch, using an approach similar to the one 

given in the above section. For example, if we use two coplanar circles for all the Bi (t)’s and Hi (t)’s in 

the patches (see Figure 2) and let R = [1,r,r2,r3], then the Bézier curve 

, 

becomes a surface when t varies, and this surface satisfies all the above requirements if the radius of 
Hi is two times the radius of Bi. Note that two Bézier curves constructed from [V∞,B,H,C] and [V∞,  

, ,  ] are C2 smoothly connected at V∞ if and only if (1) B, V∞, and  are collinear, (2) V∞ is the 

midpoint of B and  and, (3)  = H + 4(V∞ − B). The above defined Ti (r, t) satisfies all the conditions 
because the two coplanar circles are smooth and symmetric with respect to V∞. However, the resulting 
surface from this Ti (r, t) may not be the one the designer wants. So we need more constraints on Bi (t) 
and Hi (t). In the following, we will construct a Ti that is similar to the original subdivision surface Pi at 
the extra-ordinary point by requiring that Ti and Pi have the same location, same first and second 
derivatives at V∞. 

The basic idea is again to construct Bézier curves that pass through V∞ and have the same partial 
derivatives at V∞ as Pi. This is done through four steps. First, we construct a B-spline curve Bi (t) around 
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the extra-ordinary point using the first partial derivative vectors along each edge of the extra-ordinary 
point. Second, we construct another B-spline curve Hi (t) around the extra-ordinary point using the 
second partial derivative vectors along each edge of the extra-ordinary point. Third, find four control 
points for a Bézier curve such that it passes through V∞ and Ci (t), and such that its first derivative at 
V∞ is Bi (t) and the second derivative at V∞ is Hi (t). Finally, using the four points, we can construct a 
Bézier curve which becomes a smooth surface when t varies. Because Bi (t), Hi (t) and Ci(t) are C2 

continuous, the constructed Bézier surface is C2 smooth everywhere except at the extra-ordinary point. 
We can make it C2 at the extra-ordinary point by adding one more condition such that Bi (t) and Hi(t) are 
symmetric with respect to the point V∞.  

 

   

         (a) C2 surface  evaluation                           (b) CCSS evaluation                                   (c) control mesh 

            

      (d) Isophotes on C2 surface            (e) Isophotes on CCSS surface                            (f) control mesh 

Fig. 3: Test examples. 

Blending Ti with Si: 
To construct a C2 patch Qi(r,t) in the ith face around an extra-ordinary vertex V of valance n, we first 
construct Ti and Si using the methods given in the previous sections and then blend them together 
smoothly with a C2 continuous blending function as follows. 

 (8) 

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2, W = [Wt,rWt,r2Wt,r3Wt,r4Wt] and Mn is a constant coefficient matrix of size 
80 × (2n + 8). Wt is defined in section 4. Mn can be pre-computed for each n involved. 

Now we can define a new C2 patch ) to replace the whole patch Pi(u,v), as follows. 
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                                                          (9) 

where 0 ≤ u,v ≤ 1 and u = r cost,v = r sint. It is clear that (u,v) is C2 itself and C2 with its neighboring 

patches, Note that from Eq. (2) one can see that Pi (u,v), when u2 + v2 >= 1, can also be represented by a 

matrix form W Gi, where W is defined in section 4,  is a constant matrix of size 16 × (2n+8) and 

can be pre-calculated as well. Hence at any parameter point (u,v),  (u,v) and its derivatives can be 

calculated explicitly using just simple matrix operations. 

Test Results: 
The proposed approach has been implemented in C++ using OpenGL as the supporting graphics 
system on the Windows platform. Quite a few examples have been tested with the method described 
here (see Figure 3). All the examples have extra-ordinary vertices. With Mn pre-calculated for all 
different valences of n, the implementation is actually very easy. Although Mn is a big matrix, the 
computation needed for each point is not big at all because MnGi needs to be done only once. Our 
method is designed to ensure the resulting C2 surface is similar to the subdivision surface. Figures 2(a-
b) and 4(d-e) show two cases of comparison between a C2 surface and its corresponding Catmull-Clark 
subdivision surface (CCSS). In either case, it is not obvious to tell the difference between the C2 surface 
and its corresponding CCSS at all, although some very minor differences indeed exist. Figures 2(d-e) 
show the isophotes around extra-ordinary points using also our approach and CCSS approach. Ten 
isophotes are displayed around each extra-ordinary point and each isophote is corresponding to a 
circle in parameter space. The radii for the C2 isophotes are the same as those for the CCSS isophotes. 
From these figures we can see that, when a point in the parameter space tends to (0, 0), the points 
generated by our approach are closer to the extra-ordinary point than points generated by a 
subdivision approach. When there are more points closer to the extra-ordinary point, there is more 
room for the generated surface to overcome the oscillation problem around an extra-ordinary point. As 
a result, our method produces smoother surface in the neighborhood of an extra-ordinary vertex.  
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