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Introduction: 
In this research, based on the concept of the smoothing by curve shortening flow and curvature flow, 
we will propose log-aesthetic flow to make free-form curves “log-aesthetic.” We will discuss smoothing 
methods that deal with continuous curves as well as discrete ones.  

Curve Shortening Flow and Curvature Flow [4]: 
We deal with a curve 𝑪(𝑝, 𝑡) defined by parameter 𝑝 (0 ≤ 𝑝 ≤ 1) which deforms with time 𝑡. We assume 
that that its total length is a function of 𝑡 and express it as 𝐿(𝑡). Then 

𝐿(𝑡) = ∫ ‖
𝜕𝑪

𝜕𝑝
‖ 𝑑𝑝                                                                                                      (1)

1

0

 

                                                                         
where ‖𝒗‖ means the norm of vector 𝒗. By differentiating the above equation with respect to 𝑡, we obtain  

𝐿′(𝑡) = ∫
〈
𝜕𝑪
𝜕𝑝

,
𝜕2𝑪
𝜕𝑝𝜕𝑡

〉

‖
𝜕𝑪
𝜕𝑝

‖
𝑑𝑝                                                                                            (2)

1

0

 

                                                                           
where 〈𝒂, 𝒃〉 means the inner product of two vectors 𝒂 and 𝒃. By performing partial integration to Eqn.(2) , 

𝐿′(𝑡) = [
〈
𝜕𝑪
𝜕𝑝

,
𝜕𝑪
𝜕𝑡

〉

‖
𝜕𝑪
𝜕𝑝

‖
]

0

1

− ∫ 〈
𝜕𝑪

𝜕𝑡
,

𝜕

𝜕𝑝
[

𝜕𝑪
𝜕𝑝

‖
𝜕𝑪
𝜕𝑝

‖
]〉 𝑑𝑝                                                               (3)

1

0

 

We assume that both of the end point positions of the curve are fixed with respect to time, i.e. 
𝜕𝑪(0, 𝑡)/𝜕𝑡 = 𝜕𝑪(1, 𝑡)/𝜕𝑡 = 0. Then  

𝐿′(𝑡) = − ∫ 〈
𝜕𝑪

𝜕𝑡
, 𝜅𝑁〉 𝑑𝑠                                                                                (4)

𝐿(𝑡)

0

 

where s is an arc length and it is given by 𝑑𝑠 = ‖𝜕𝐶/𝜕𝑝‖𝑑𝑝. 𝜅 and 𝑵 are the curvature and the normal 
vector, respectively and they are defined by 𝜅𝑵 = 𝜕2𝑪/𝜕𝑠2. Hence when  

𝜕𝑪

𝜕𝑡
= 𝜅𝑁,                                                                                                      (5) 

then 𝐿(𝑡) will decrease the most quickly. This flow is called curve shortening flow. 
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Here we define the curve’s energy as 𝐸(𝑡) = ∫ 𝜅2𝑑𝑠
𝐿(𝑡)

0
. Then 

𝐸′(𝑡) = 2 ∫ 𝜅
𝜕𝜅

𝜕𝑡
𝑑𝑠,                                                                                (6)

𝐿(𝑡)

0

 

Therefore 𝐸(t) will decrease the most rapidly when ∂𝜅/𝜕𝑡 = −2𝜅. This flow also deforms the shape of the 
curve using curvature and it is called curvature flow. 

Log-aesthetic Flow 
Arc-length Functional of the Log-aesthetic Curve in Aesthetic Space 
The functional of the log-aesthetic curve which satisfies 𝜎 = 𝜌𝛼 = 𝑐𝑠 + 𝑑  is given by the following 
expression [5]: 

𝐽(𝑡) = ∫ √1 + 𝜎𝑠
2𝑑𝑠.                                                                                             (7)

𝐿

0

 

Hence 

𝐽′(𝑡) = ∫ (1 + 𝜎𝑠
2)−

1
2𝜎𝑠𝜎𝑠𝑡𝑑𝑠 

𝐿

0

= [(1 + 𝜎𝑠
2)−

1
2𝜎𝑠𝜎𝑡]

0

𝐿

− ∫
𝜎𝑠𝑠

(1 + 𝜎𝑠
2)

3
2

𝜎𝑡𝑑𝑠                                             (8)
𝐿

0

 

We assume that both of the curvatures at the end points are fixed with respect to time, i.e. 𝜕𝜎(0, 𝑡)/𝜕𝑡 =
𝜕𝜎(𝐿, 𝑡)/𝜕𝑡 = 0. Then  

𝐽′(𝑡) = − ∫
𝜎𝑠𝑠

(1 + 𝜎𝑠
2)

3
2

𝜎𝑡𝑑𝑠                                                                                (9)
𝐿

0

 

Then 𝐽(t) will decrease the most rapidly when  

𝜎𝑡 =
𝜎𝑠𝑠

(1 + 𝜎𝑠
2)

3
2

                                                                                                 (10) 

In this paper we call this type of the flow length-based log-aesthetic flow. 
Energy Functional of the Log-aesthetic Curve in Aesthetic Space 
It is known that the problem to minimize the length of a curve is equivalent to that to minimize its 
energy [2]. The energy of the log-aesthetic curve corresponding to Eqn. (7) [5] is given by 

𝐽𝐸(𝑡) =
1

2
∫ (1 + 𝜎𝑠

2)𝑑𝑠.                                                                                             (11)
𝐿

0

 

From the above equation and the assumption that 𝜕𝜎(0, 𝑡)/𝜕𝑡 = 𝜕𝜎(𝐿, 𝑡)/𝜕𝑡 = 0, we obtain 

𝐽′𝐸(𝑡) = − ∫ 𝜎𝑠𝑠𝜎𝑡𝑑𝑠.                                                                                             (12)
𝐿

0

 

Therefore 𝐽𝐸(t) will decrease the most rapidly when 
𝜎𝑡 = 𝜎𝑠𝑠.                                                                                                       (13) 

The above equation approximates Eqn. (10) and we call this type of the flow energy-based log-aesthetic 
flow. 

Continuous Log-aesthetic Flow: 
The heat conduction equation in one dimension is generally given by the following equations [3]:  

𝜕𝑢

𝜕𝑡
= 𝑎

𝜕2𝑢

𝜕𝑠2 , 0 < 𝑠 < 𝐿, 0 < 𝑡                                                                              (14) 

where 𝑢 is an unknown function representing temperature and 𝑠 is a parameter representing position. 
𝑎 > 0 and 𝑎 is called thermal conductivity. 𝐿 is the total length of the object to be analized. Hence Eqn. 
(15) can be interpreted as a heat conduction equation with 𝑎 = 1 on 𝜎 = 𝜌𝛼 = 𝜅−𝛼 of a curve and we can 
describe the change of curvature, i.e. the deformation of the curve as the temperature change by heat 
conduction. This fact means that the energy-based log-aesthetic flow basically behaves as heat 
conduction and by solving the heat conduction equations we can obtain the shape of the curve deformed 
continuously by log-aesthetic flow.  We will discuss how to solve Eqn. (14) under various conditions 
below.  
 
In Case where 𝜿 = 𝟎 at Both of the End Points 
Here we assume that 𝛼 = −1 and Eqn. (14) becomes  

𝜅𝑡 = 𝜅𝑠𝑠.                                                                                               (15) 
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Furthermore we assume that the curvatures at both of the end points of the curve are equal to 0 and the 
total length of the curve is 𝐿. The initial and boundary conditions are given by 𝜅(𝑠, 0) = 𝑓(𝑠) and 𝜅(0, 𝑡) =
𝜅(𝐿, 𝑡) = 0, respectively.  We assume that a solution 𝜅(𝑠, 𝑡) is the product of 𝑆(𝑠) of only parameter 𝑠 and                                                                               
𝑇(𝑡) of only parameter 𝑡 as  

𝜅(𝑠, 𝑡) = 𝑆(𝑠)𝑇(𝑡).                                                                                   (16) 
From the above discussion and the principle of superposition, the general solution 𝜅(𝑠, 0) is given by 

𝜅(𝑠, 𝑡) = ∑ 𝑎𝑚 sin (
𝑚𝜋

𝐿
𝑠)

∞

𝑚=1

exp(−
𝑚2𝜋2

𝐿2 𝑡)                                                     (17) 

Therefore 𝑎𝑚 is given by 

𝑎𝑚 = 2 ∫ sin (
𝑚𝜋

𝐿
𝑠)

𝐿

0

𝑓(𝑠)𝑑𝑠, 𝑚 = 1,2, ⋯                                                  (18) 

For example, when 𝐿 = 1 and 𝑓(𝑠) = sin(𝜋𝑠), from Eqn. (18) 

𝑎𝑚 = {
1, 𝑚 = 0
0, 𝑚 > 1

                                                                                       (19) 

and 
𝜅(𝑠, 𝑡) = sin(𝜋𝑠) exp(−𝜋2𝑡)                                                                    (20) 

Hence as 𝑡 approaches infinity, 𝜅(𝑠) → 0 and the curve converges to a straight line.  
 
In Case where 𝜿 ≠ 𝟎 at the End Points: inhomogeneous boundary conditions 
Again we assume that 𝛼 = −1 and the curvatures of the end points of the curves are fixed 𝜅0 and 𝜅1, 
respectively. We define a function 𝛾(𝑠, 𝑡) whose curvatures of the end points are equal to be 0 as follows: 

𝛾(𝑠, 𝑡) = 𝜅(𝑠, 𝑡) −
1

𝐿
(𝜅0(𝐿 − 𝑠) + 𝜅1𝑠)                                                                    (21) 

Using Eqn. (17), the following general equation is obtained: 

𝛾(𝑠, 𝑡) = ∑ 𝑎𝑚 sin (
𝑚𝜋

𝐿
𝑠)

∞

𝑚=1

exp(−
𝑚2𝜋2

𝐿2
𝑡)                                                     (22) 

Therefore  

𝜅(𝑠, 𝑡) = 𝛾(𝑠, 𝑡) +
1

𝐿
(𝜅0(𝐿 − 𝑠) + 𝜅1𝑠)     =  ∑ 𝑎𝑚 sin (

𝑚𝜋

𝐿
𝑠)

∞

𝑚=1

exp(−
𝑚2𝜋2

𝐿2 𝑡) +
1

𝐿
(𝜅0(𝐿 − 𝑠) + 𝜅1𝑠)         (23) 

As 𝑡 approaches infinity, 𝜅(𝑠) → (𝜅0(𝐿 − 𝑠) + 𝜅1𝑠)/𝐿, the curvature of the curve is given by a linear function 
of 𝑠 and the curve converges to a clothoid curve. For example, when = 1 , 𝑓(𝑠) = sin(𝜋𝑠), 𝜅0 = 1, and 𝜅0 =
1, from Eqn. (17), 

𝑎𝑚 = {
1, 𝑚 = 0
0, 𝑚 > 1

                                                                                             (24) 

and 
𝜅(𝑠, 𝑡) = sin(𝜋𝑠) exp(−𝜋2𝑡) + 1 − 𝑠                                                                    (25) 

Fig. 1. shows curvature distributions and the shapes of the curves deformed by log-aesthetic flow. 
Hence as 𝑡 approaches infinity, 𝜅(𝑠) → 0 and the curve converges to a straight line. The bottom of the 
right figure shows curves that are modified to pass through the given end points of the initial curve by 
iterative processes by shortening the curve to satisfy the given curvatures. Hence our method can 
generate a curve between given two points and two end curvatures. We will explain the details of the 
processes in the final paper. 

Fig. 1: Curvature distributions and their curve shapes deformed by log-aesthetic flow. 
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General  𝜶 Case  
We deal with the following problem: Assume that the total length of the curve is 𝐿 and the initial 
condition is 𝜅(𝑠, 0) = 𝑓(𝑠). Furthermore, the curvatures of the end points of the curves are fixed 𝜅0 and 
𝜅1, respectively. Then 

𝜕𝜎

𝜕𝑡
=

𝜕2𝜎

𝜕𝑠2 , 0 < 𝑠 < 𝐿, 0 < 𝑡, 𝜎(𝑠, 0) = 𝑓(𝑠)−𝛼 ,   𝜎(0, 𝑡) = 𝜅0
−𝛼 , 𝜎(𝐿, 𝑡) = 𝜅1

−𝛼 .        (26)   

By solving the above partial differential equation, 𝜎(𝑠, 𝑡) is obtained and 𝜅(𝑠, 𝑡)= 𝜎(𝑠, 𝑡)−
1

𝛼 is determined. 
For example, when 𝛼 = −1/2, = 1 , 𝑓(𝑠) = sin2(𝜋𝑠), 𝜅0 = 1, and 𝜅1 = 1, from Eqn. (25), 

𝜎(𝑠, 𝑡) = sin(𝜋𝑠) exp(−𝜋2𝑡) + 1 − 𝑠                                                                       (27) 
So the curvature 𝜅(𝑠, 𝑡) is given by 

𝜅(𝑠, 𝑡) = {sin(𝜋𝑠) exp(−𝜋2𝑡) + 1 − 𝑠}2                                                                 (28) 
Fig. 2 shows the curvature distributions of the deformed curves the shapes of the curves deformed by 
log-aesthetic flow. 

 
 

Fig. 2: Curvature distributions and their curve shapes deformed by log-aesthetic flow. 

Discrete Log-aesthetic Flow: 
In this section we discuss smoothing of discretely defined free-form curves, or polylines. Based on the 
log-aesthetic flow based on the energy, we update the positions of the vertices of a polyline by the 
discretized partial differential equation derived from Eqn. (14). Our algorithm uses the method proposed 
by Crane et al. [1] and we will fully explain the details of our algorithm in the final paper. 

Fig. 3(a) compares deformations induced by log-aesthetic flow with those by curvature flow. 
Although the curve converges more quickly by curvature flow than by log-aesthetic flow, their final 
shapes are the same: a circle.  

(a) An ellipse                                   (b) A more complicated shape 
 

Fig. 3: Smoothing shapes by curvature flow and log-aesthetic flow. 
 
Fig. 3(b) shows a comparison between curvature flow and log-aesthetic flow applied to a more 
complicated. The final shapes are also circles in this case. If we interpret that the curve deformation is 
induced by log-aesthetic flow by heat conduction, the result is very natural because if we have a circular 
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metal rod and keep one point of the rod at some temperature, the heat is conducted all over the rod and 
the temperature will be the same everywhere. 

Conclusions and Future Work: 
In this research, we have proposed the concept of log-aesthetic flow to make free-form curves “log-
aesthetic” based on curve shortening flow and curvature flow. We have proposed new smoothing 
methods that can handle analytically defined continuous curves as well as discrete polylines. Smoothing 
by curvature flow is very popular among CG and CAD communities and log-aesthetic flow will be another 
choice for smoothing based on a physical law different from that of curvature flow. We have one degree 
of freedom 𝛼 to control smoothing for log-aesthetic flow and can expect the completely smoothed shape 
of a given curve, which means the shape obtained by fairing, to be log-aesthetic curve. Since log-aesthetic 
flow is basically governed by the heat conduction equation, which has been well studied in both physics 
and mechanical engineering, its effects are easily inferred by the designers and we hope that it will be 
useful for practical aesthetic design.  For future work, we would like to extend our method based on log-
aesthetic flow for space curves and free-form surfaces. 
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