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Introduction: 
Graph-based models play an important role in product design. Particularly in conceptual design, 
graphs are used for abstract representation of functionality, topology and physical relations among 
product components. Graph-rewriting is an expressive computation model operating on graphs, and 
thus becomes a natural choice for implementing computed-aided conceptual design. 

Graph-rewriting systems rely on a set of so-called production rules for deriving graphs. However, 
handcrafting such rules can become a tremendous effort — a well-known problem in the field of 
expert systems, called the “knowledge engineering bottleneck”. In this paper we discuss approaches to 
the automatic induction of production rules from given design graphs using machine learning. Four 
approaches were compared with respect to an application in conceptual design, specifically functional 
decomposition. The parse/derive method is an original contribution of this paper. 

Main Idea: 
Sridharan and Campbell [9] proposed a graph grammar for functional decomposition. Their set of 
production rules is capable of deriving complex function structures, i.e., a directed graph labeled with 
functions and flows, from a simple black box description of a product’s overall function. In [9] this 
grammar is used to determine the functional decomposition of an electric knife (see Fig. 1 for a 
simplified version). For the present work, these rules are used as benchmark for machine learning. 

 

 

 
Fig. 1: Black box (left), function structure (center), example of a production rule that adds an energy 
conversion function (right). EE/HE/ME refer to electrical/human/mechanical energy, respectively. 
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There are various ways for implementing graph-rewriting systems. Herein, we suppose that 
production rules consist of a set of elementary graph transformations, which are applied on a host 
graph in order to yield an output graph (e.g. adding/removing nodes/edges/labels). The subsequent 
application of multiple rules, called derivation, leads to a series of produced graphs. Now, suppose 
graph G is a black box function model, and graph H is a unknown, fully evolved function structure, 
then H can be derived from G by applying a sequence of production rules p1, p2, …, pn. 

Now, consider the case where G and H are given, but the production rules and/or their sequence 
of application are not known. This resembles a situation where the requirements for a design task and 
its final results are documented, yet the way in which the results were achieved is unclear. This is the 
context where machine learning methods may be applied to reconstruct the design process. We 
distinguish four different situations thereof: 

• A) No production rules are known. 
• B) All production rules are known, but their sequence of application is unknown. 
• C) Only a subset of the needed production rules is known, and nothing is known about the 

application sequence. 

• D) Only a subset of the needed production rules is known, yet the sequence in which existing 
and missing rules should be applied is known. 

The remainder of this paper deals with the implementation of machine learning strategies for each 
of these cases. 

Case A: Literature surveys point out that there has been a continuing interest in the problems of 
grammar and rule induction (also called grammar/rule inference) over the last 30 years [3,7]. A well-
known approach within that field is called Subdue [2]. Subdue induces a complete set of production 
rules from pairs of input/output graphs. It iteratively adds one rule at a time. At each iteration Subdue 
searches for subgraphs that frequently appear in the training examples. From these subgraphs one is 
chosen as the post-condition of the new rule. All appearances of the subgraph are then replaced by a 
non-terminal, which in turn is used as the pre-condition of the new rule. After this compression step 
the next rule is searched. From the candidate set, that rule is chosen which achieves the best 
compression ratio. Candidates are generated by “growing” subgraphs. The process starts from single 
nodes and successively adds a neighboring edge or an edge and a node. 

Case B: The problem addressed here is a special form of the reachability problem in graph-
rewriting [1]: Given a finite set of rules P, an initial graph G and a final graph H, the reachability 
problem is defined as follows: is there a derivation from G to H using P? If we are dealing with finite-
state graph rewriting systems, reachability is decidable, whereas infinite graph-rewriting systems have 
to comply certain requirements (see [1] for details). Herein, we suppose that the space of possible rule 
sequences is finite (e.g. by defining limits for repeating rules). Hence, the set of graphs that can be 
produced, i.e. the graph-rewriting system’s language, is finite as well.  

In order to determine reachability, a search algorithm is needed that searches the combinatorial 
space of possible rule sequences. The search succeeds if a sequence is found that is able to reproduce 
the target graph H. In order to implement the search, any discrete search algorithm is applicable. 
However, the search space factorially increases with the rule sequence length, so a complete search 
most often becomes infeasible. Hence, some works in this field used meta-heuristics like simulated 
annealing [8]. Another important factor influencing efficiency is the independence of rules. If the rule 
set contains rules being independent from each other, different rule sequences may lead to the same 
result — an effect called confluence. Different techniques for handling confluence leading to a more 
efficient exploration of the search space are discussed in [4]. 

Case C: One of the methods described in [4], the critical-pair analysis, also provides a basis for the 
following parse/derive method, a method for dealing with case C and the main contribution of this 
paper. The idea of this approach can be paraphrased visually: Imagine G and H as two cities being 
separated by a river. To be able to go from G to H (derivation) the river is supposed to be bridged by a 
rule that must be learned. The parse/derive method approaches the river from both sides and 
searches for narrows along the river: I.e., it simultaneously searches for derivation sequences from G 
and parse sequences from H, where parsing denotes the reverse application of rules. The pair of 
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derivation and parse sequences achieving the highest similarity of produced graphs defines the place 
for “constructing the bridge”. The method involves multiple stages: 

Initially, all existing rules are grounded, i.e., any variable used for specifying node, edges and 
labels are fixed to constants. The set of grounded rules is obtained from the permutation of possible 
variable instantiations. Grounding rules serves two purposes within the parse/derive method:  

First, they are used to determine sequential dependencies among rules by means of critical pair 
analysis. This method looks for prototypical situations, where two rules stand in conflict (parallel 
dependence), or one rule requires the prior application of the other (sequential dependence). 
Candidates for such situations are found by inspecting the possible overlaps of grounded rules. See [6] 
for further details. 

Second, given the grounded versions of a rule, frequency tables over the node/edge labels being 
affected by the rule can be computed. Label frequency tables taken before and after the application of 
a grounded rule are used to determine the differences in label frequencies, denoted by d. These 
differences are a simplified, vectorized representation of the rule’s graph transformations. In the 
sense of this simplification, a derivation corresponds to the summation of frequency table differences 
over all applied rules. Adding this sum to the frequency table of the host graph results in the 
frequency table of the final graph. The procedure is the same for parsing, except that the frequency 
table differences of rules are negated. 

From the vectorization of the parse and derivation processes, a quadratic linear integer 
optimization problem can be formulated (Eq. 1). The optimization problem targets the question: What 
rules need to be applied in what quantity, such that the difference of derivation and parse frequency 
tables is minimal? We denote this using two vectors x and y, for derivation and parsing respectively.  
The length of both vectors corresponds to the size of the set of grounded rules, and each row 
represents the times a rule is being applied. The goal is to find a pair x*, y* that minimizes the 
distance between the resulting parsing/derivation frequency tables. The problem is constrained by the 
identified sequential dependencies among rules (Eq. 2). Every rule is either applied on the elements of 
the initial graph, or on the elements added by a previously applied rule. Hence, if a rule is not 
sequentially dependent on others, it can only be applied on the initial graph (see second conditions of 
Eq. 2). In this case the upper bound for applications of a rule must be lower or equal to the number of 
possible applications on the initial graph numApp(G,k) or numApp(H,v), where k and v are indices for 
derivation rules and parsing rules respectively. If sequentially dependent rules exist, this upper bound 
is raised by the number of sequentially dependent rule applications (see first conditions of Eq. 2). 
 

  (1) 

 

s.t. for each k :

ak £ numApp(G,k)+ x j
jÎJ

å if J ¹ Æ
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where J = j | seqDep( j,k) = true{ }

and for each v :
bv £ numApp(H,v)+ yu
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where U = u | seqDep(u,v) = true{ }

 (2) 

ak =
xk if rule indexed by k is self-dependent

1« xk ³1 else.

ì

í
ï

îï
bv =

yk if rule indexed by k is self-dependent

1« yk ³1 else.

ì

í
ï

îï
 (3) 

Having identified promising quantities for the number of rule applications, the next step targets the 
question: In what sequences do the found rules have to be applied? This is answered using a genetic 
algorithm (GA) that searches over the now reduced space of possible rule sequences for derivation and 
parsing. Using the given rule application quantities, the GA tries to actually apply the rules stepping 
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aside from the frequency table simplification used earlier. The longest pair of applicable sequences is 
considered optimal. From this pair all derived and parsed graphs are gathered. 

Finally, the most similar pair of derivation/parse graphs is chosen to obtain the resulting rule. A 
mapping between both graphs is established for every common node or edge. Elements that cannot be 
mapped will be subject to the new rules graph transformations. Fig. 2 provides a summary of the 
method. 
 

 

Fig. 2: Process steps of the parse/derive method. 
 

Case D: If access to the definition of rules is provided and the reverse application of rules is 
available, then case D is a trivial application of the parse/derive method. However, in practical 
applications, definitions of existing rules are likely to be considered confidential, since they encode 
valuable design rationale. Further, rewrite-systems often are not readily designed to deal with the 
reverse application of rules for parsing.  

A method capable of learning rules under these restrictions is the genetic programming approach 
of [5]. Genetic programming (GP) is a meta-heuristic that builds on evolutionary principles for solving 
combinatorial optimization problems. The method's key concepts are its tree representation of 
possible solutions and the sampling of solutions, which is based on evolutionary principles. In this 
case GP-trees are used to store two kinds of information: On which graph will the rule be applied? 
And, what graph transformation operations will the rule apply on the graph? The first question is 
addressed by a GP-tree's root node. Using an integer number associated with the root, a host graph for 
applying the rule candidate is chosen from a set of possible host graphs. Since the order of rule 
applications is known a priori, the set of possible host graphs can be directly obtained by means of 
derivation. The remaining nodes of the GP-tree are used to answer the second question. Each of these 
nodes represents a single graph transformation operation. Every such node has a single integer 
number associated, which is used to determine what node/edge is added/removed. The rule candidate 
is then applied by propagating a host graph through the GP-tree, where at each node the 
corresponding transformation is applied.  

With each iteration of the GP, a new population of GP-trees is produced by means of the 
evolutionary principles of selection, recombination and mutation. Selection determines which 
solutions, or individuals, of the current iteration should be used for generating the individuals of the 
next iteration. This choice is based on the “fitness” of each individual. A rule candidate’s fitness is 
determined by deriving the rest of the rule sequence starting from the newly generated host graph. 
Each derived graph is then compared with the target graph. A rule candidate that facilitates the 
derivation of a graph being most similar to the target graph is considered optimal. Until optimality is 
reached, mutation and crossover are used to produce new individuals: Mutation randomly modifies 
parts of an existing solution to form new individuals for the next iteration. Recombination randomly 
joins parts of two solutions to create a new individual. 

Results: All four approaches were applied within in computer experiments using the graph 
grammar of [9] as benchmark. During the experiments, rules were removed from the rule set and/or 
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the sequence of rule applications was left open. Then the methods for A to D were applied to 
determine the missing rule(s) or the application sequence. Considering the page limitation of this 
article, only a summary is given. Supplementary material is provided online at 
http://ouky.de/accompanying-materials/cad-2016.  

Due to the high complexity of the tasks of C and D, the computational affordances are high. On a 
conventional computer (PC with 2.5 GHz 4-core CPU and 16 GB RAM) the evaluation of a single leave-
one-rule-out experiment ranges from several minutes up to a few hours depending on the complexity 
of the rule and its position within the rule sequence. Approaches A and B in turn operate within 
seconds up to a few minutes. The approaches of C and D are capable of producing rules that are 
highly similar to the original rule formulations. In contrast to this, Subdue induces a complete rule set 
from scratch, where the new rules reflect the frequencies of recurring graph patterns within the 
training graphs. If this was not the purpose of the original rules, correspondence with learned rules 
cannot be guaranteed for case A. Besides this, effects can be observed with C and D, which we term 
“cannibalization” and “the swapping of duties”. The first effect is that the rule to be learned also 
replaces existing rules by performing their operations as well. The second effect appears if there is a 
rule succeeding the rule to be learned, and this existing rule is able to take over some of missing rule’s 
operations. However, then the substituting rule’s original task will not be accomplished anymore. This 
is where the learner sets in and determines a new rule compensating the original rule's missed duties. 

Conclusions: 
This article addressed a crucial issue in the context of graph-based conceptual design automation, 
namely the configuration of graph-rewriting systems used for producing design graphs. It has been 
shown that various techniques exist to determine the production rules and rule application sequences, 
both essential parts of a graph-rewriting system. With the proposed parse/derive method, this toolbox 
is further extended. We suppose that with the ongoing advancement of high-performance computing 
such methods will facilitate the practical implementation of graph-based expert systems for CAD. 
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