
157

Proceedings of CAD’16, Vancouver, Canada, June 27-29, 2016, 157-161
© 2016 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Reconstructing Design Processes by Machine Learning of Graph-Rewriting Production Rules

Authors:
Julian R. Eichhoff, julian.eichhoff@informatik.uni-stuttgart.de, University of Stuttgart
Felix, Baumann, felix.baumann@informatik.uni-stuttgart.de, University of Stuttgart
Dieter Roller, dieter.roller@informatik.uni-stuttgart.de, University of Stuttgart

Keywords:
Design Automation, Machine Learning, Graph-Rewriting, Functional Decomposition, Rule Induction

DOI: 10.14733/cadconfP.2016.157-161

Introduction:
Graph-based models play an important role in product design. Particularly in conceptual design,
graphs are used for abstract representation of functionality, topology and physical relations among
product components. Graph-rewriting is an expressive computation model operating on graphs, and
thus becomes a natural choice for implementing computed-aided conceptual design.

Graph-rewriting systems rely on a set of so-called production rules for deriving graphs. However,
handcrafting such rules can become a tremendous effort — a well-known problem in the field of
expert systems, called the “knowledge engineering bottleneck”. In this paper we discuss approaches to
the automatic induction of production rules from given design graphs using machine learning. Four
approaches were compared with respect to an application in conceptual design, specifically functional
decomposition. The parse/derive method is an original contribution of this paper.

Main Idea:
Sridharan and Campbell [9] proposed a graph grammar for functional decomposition. Their set of
production rules is capable of deriving complex function structures, i.e., a directed graph labeled with
functions and flows, from a simple black box description of a product’s overall function. In [9] this
grammar is used to determine the functional decomposition of an electric knife (see Fig. 1 for a
simplified version). For the present work, these rules are used as benchmark for machine learning.

Fig. 1: Black box (left), function structure (center), example of a production rule that adds an energy
conversion function (right). EE/HE/ME refer to electrical/human/mechanical energy, respectively.

http://www.cad-conference.net/

158

Proceedings of CAD’16, Vancouver, Canada, June 27-29, 2016, 157-161
© 2016 CAD Solutions, LLC, http://www.cad-conference.net

There are various ways for implementing graph-rewriting systems. Herein, we suppose that
production rules consist of a set of elementary graph transformations, which are applied on a host
graph in order to yield an output graph (e.g. adding/removing nodes/edges/labels). The subsequent
application of multiple rules, called derivation, leads to a series of produced graphs. Now, suppose
graph G is a black box function model, and graph H is a unknown, fully evolved function structure,
then H can be derived from G by applying a sequence of production rules p1, p2, …, pn.

Now, consider the case where G and H are given, but the production rules and/or their sequence
of application are not known. This resembles a situation where the requirements for a design task and
its final results are documented, yet the way in which the results were achieved is unclear. This is the
context where machine learning methods may be applied to reconstruct the design process. We
distinguish four different situations thereof:

• A) No production rules are known.
• B) All production rules are known, but their sequence of application is unknown.
• C) Only a subset of the needed production rules is known, and nothing is known about the

application sequence.

• D) Only a subset of the needed production rules is known, yet the sequence in which existing
and missing rules should be applied is known.

The remainder of this paper deals with the implementation of machine learning strategies for each
of these cases.

Case A: Literature surveys point out that there has been a continuing interest in the problems of
grammar and rule induction (also called grammar/rule inference) over the last 30 years [3,7]. A well-
known approach within that field is called Subdue [2]. Subdue induces a complete set of production
rules from pairs of input/output graphs. It iteratively adds one rule at a time. At each iteration Subdue
searches for subgraphs that frequently appear in the training examples. From these subgraphs one is
chosen as the post-condition of the new rule. All appearances of the subgraph are then replaced by a
non-terminal, which in turn is used as the pre-condition of the new rule. After this compression step
the next rule is searched. From the candidate set, that rule is chosen which achieves the best
compression ratio. Candidates are generated by “growing” subgraphs. The process starts from single
nodes and successively adds a neighboring edge or an edge and a node.

Case B: The problem addressed here is a special form of the reachability problem in graph-
rewriting [1]: Given a finite set of rules P, an initial graph G and a final graph H, the reachability
problem is defined as follows: is there a derivation from G to H using P? If we are dealing with finite-
state graph rewriting systems, reachability is decidable, whereas infinite graph-rewriting systems have
to comply certain requirements (see [1] for details). Herein, we suppose that the space of possible rule
sequences is finite (e.g. by defining limits for repeating rules). Hence, the set of graphs that can be
produced, i.e. the graph-rewriting system’s language, is finite as well.

In order to determine reachability, a search algorithm is needed that searches the combinatorial
space of possible rule sequences. The search succeeds if a sequence is found that is able to reproduce
the target graph H. In order to implement the search, any discrete search algorithm is applicable.
However, the search space factorially increases with the rule sequence length, so a complete search
most often becomes infeasible. Hence, some works in this field used meta-heuristics like simulated
annealing [8]. Another important factor influencing efficiency is the independence of rules. If the rule
set contains rules being independent from each other, different rule sequences may lead to the same
result — an effect called confluence. Different techniques for handling confluence leading to a more
efficient exploration of the search space are discussed in [4].

Case C: One of the methods described in [4], the critical-pair analysis, also provides a basis for the
following parse/derive method, a method for dealing with case C and the main contribution of this
paper. The idea of this approach can be paraphrased visually: Imagine G and H as two cities being
separated by a river. To be able to go from G to H (derivation) the river is supposed to be bridged by a
rule that must be learned. The parse/derive method approaches the river from both sides and
searches for narrows along the river: I.e., it simultaneously searches for derivation sequences from G
and parse sequences from H, where parsing denotes the reverse application of rules. The pair of

http://www.cad-conference.net/

159

Proceedings of CAD’16, Vancouver, Canada, June 27-29, 2016, 157-161
© 2016 CAD Solutions, LLC, http://www.cad-conference.net

derivation and parse sequences achieving the highest similarity of produced graphs defines the place
for “constructing the bridge”. The method involves multiple stages:

Initially, all existing rules are grounded, i.e., any variable used for specifying node, edges and
labels are fixed to constants. The set of grounded rules is obtained from the permutation of possible
variable instantiations. Grounding rules serves two purposes within the parse/derive method:

First, they are used to determine sequential dependencies among rules by means of critical pair
analysis. This method looks for prototypical situations, where two rules stand in conflict (parallel
dependence), or one rule requires the prior application of the other (sequential dependence).
Candidates for such situations are found by inspecting the possible overlaps of grounded rules. See [6]
for further details.

Second, given the grounded versions of a rule, frequency tables over the node/edge labels being
affected by the rule can be computed. Label frequency tables taken before and after the application of
a grounded rule are used to determine the differences in label frequencies, denoted by d. These
differences are a simplified, vectorized representation of the rule’s graph transformations. In the
sense of this simplification, a derivation corresponds to the summation of frequency table differences
over all applied rules. Adding this sum to the frequency table of the host graph results in the
frequency table of the final graph. The procedure is the same for parsing, except that the frequency
table differences of rules are negated.

From the vectorization of the parse and derivation processes, a quadratic linear integer
optimization problem can be formulated (Eq. 1). The optimization problem targets the question: What
rules need to be applied in what quantity, such that the difference of derivation and parse frequency
tables is minimal? We denote this using two vectors x and y, for derivation and parsing respectively.
The length of both vectors corresponds to the size of the set of grounded rules, and each row
represents the times a rule is being applied. The goal is to find a pair x*, y* that minimizes the
distance between the resulting parsing/derivation frequency tables. The problem is constrained by the
identified sequential dependencies among rules (Eq. 2). Every rule is either applied on the elements of
the initial graph, or on the elements added by a previously applied rule. Hence, if a rule is not
sequentially dependent on others, it can only be applied on the initial graph (see second conditions of
Eq. 2). In this case the upper bound for applications of a rule must be lower or equal to the number of
possible applications on the initial graph numApp(G,k) or numApp(H,v), where k and v are indices for
derivation rules and parsing rules respectively. If sequentially dependent rules exist, this upper bound
is raised by the number of sequentially dependent rule applications (see first conditions of Eq. 2).

 (1)

s.t. for each k :

ak £ numApp(G,k)+ x j
jÎJ

å if J ¹ Æ

ak £ numApp(G,k) else.

ì

í
ï

î
ï

where J = j | seqDep(j,k) = true{ }

and for each v :
bv £ numApp(H,v)+ yu

uÎU

å if U ¹ Æ

bv £ numApp(H,v) else.

ì

í
ï

î
ï

where U = u | seqDep(u,v) = true{ }

 (2)

ak =
xk if rule indexed by k is self-dependent

1« xk ³1 else.

ì

í
ï

îï
bv =

yk if rule indexed by k is self-dependent

1« yk ³1 else.

ì

í
ï

îï
 (3)

Having identified promising quantities for the number of rule applications, the next step targets the
question: In what sequences do the found rules have to be applied? This is answered using a genetic
algorithm (GA) that searches over the now reduced space of possible rule sequences for derivation and
parsing. Using the given rule application quantities, the GA tries to actually apply the rules stepping

http://www.cad-conference.net/

160

Proceedings of CAD’16, Vancouver, Canada, June 27-29, 2016, 157-161
© 2016 CAD Solutions, LLC, http://www.cad-conference.net

aside from the frequency table simplification used earlier. The longest pair of applicable sequences is
considered optimal. From this pair all derived and parsed graphs are gathered.

Finally, the most similar pair of derivation/parse graphs is chosen to obtain the resulting rule. A
mapping between both graphs is established for every common node or edge. Elements that cannot be
mapped will be subject to the new rules graph transformations. Fig. 2 provides a summary of the
method.

Fig. 2: Process steps of the parse/derive method.

Case D: If access to the definition of rules is provided and the reverse application of rules is
available, then case D is a trivial application of the parse/derive method. However, in practical
applications, definitions of existing rules are likely to be considered confidential, since they encode
valuable design rationale. Further, rewrite-systems often are not readily designed to deal with the
reverse application of rules for parsing.

A method capable of learning rules under these restrictions is the genetic programming approach
of [5]. Genetic programming (GP) is a meta-heuristic that builds on evolutionary principles for solving
combinatorial optimization problems. The method's key concepts are its tree representation of
possible solutions and the sampling of solutions, which is based on evolutionary principles. In this
case GP-trees are used to store two kinds of information: On which graph will the rule be applied?
And, what graph transformation operations will the rule apply on the graph? The first question is
addressed by a GP-tree's root node. Using an integer number associated with the root, a host graph for
applying the rule candidate is chosen from a set of possible host graphs. Since the order of rule
applications is known a priori, the set of possible host graphs can be directly obtained by means of
derivation. The remaining nodes of the GP-tree are used to answer the second question. Each of these
nodes represents a single graph transformation operation. Every such node has a single integer
number associated, which is used to determine what node/edge is added/removed. The rule candidate
is then applied by propagating a host graph through the GP-tree, where at each node the
corresponding transformation is applied.

With each iteration of the GP, a new population of GP-trees is produced by means of the
evolutionary principles of selection, recombination and mutation. Selection determines which
solutions, or individuals, of the current iteration should be used for generating the individuals of the
next iteration. This choice is based on the “fitness” of each individual. A rule candidate’s fitness is
determined by deriving the rest of the rule sequence starting from the newly generated host graph.
Each derived graph is then compared with the target graph. A rule candidate that facilitates the
derivation of a graph being most similar to the target graph is considered optimal. Until optimality is
reached, mutation and crossover are used to produce new individuals: Mutation randomly modifies
parts of an existing solution to form new individuals for the next iteration. Recombination randomly
joins parts of two solutions to create a new individual.

Results: All four approaches were applied within in computer experiments using the graph
grammar of [9] as benchmark. During the experiments, rules were removed from the rule set and/or

http://www.cad-conference.net/

161

Proceedings of CAD’16, Vancouver, Canada, June 27-29, 2016, 157-161
© 2016 CAD Solutions, LLC, http://www.cad-conference.net

the sequence of rule applications was left open. Then the methods for A to D were applied to
determine the missing rule(s) or the application sequence. Considering the page limitation of this
article, only a summary is given. Supplementary material is provided online at
http://ouky.de/accompanying-materials/cad-2016.

Due to the high complexity of the tasks of C and D, the computational affordances are high. On a
conventional computer (PC with 2.5 GHz 4-core CPU and 16 GB RAM) the evaluation of a single leave-
one-rule-out experiment ranges from several minutes up to a few hours depending on the complexity
of the rule and its position within the rule sequence. Approaches A and B in turn operate within
seconds up to a few minutes. The approaches of C and D are capable of producing rules that are
highly similar to the original rule formulations. In contrast to this, Subdue induces a complete rule set
from scratch, where the new rules reflect the frequencies of recurring graph patterns within the
training graphs. If this was not the purpose of the original rules, correspondence with learned rules
cannot be guaranteed for case A. Besides this, effects can be observed with C and D, which we term
“cannibalization” and “the swapping of duties”. The first effect is that the rule to be learned also
replaces existing rules by performing their operations as well. The second effect appears if there is a
rule succeeding the rule to be learned, and this existing rule is able to take over some of missing rule’s
operations. However, then the substituting rule’s original task will not be accomplished anymore. This
is where the learner sets in and determines a new rule compensating the original rule's missed duties.

Conclusions:
This article addressed a crucial issue in the context of graph-based conceptual design automation,
namely the configuration of graph-rewriting systems used for producing design graphs. It has been
shown that various techniques exist to determine the production rules and rule application sequences,
both essential parts of a graph-rewriting system. With the proposed parse/derive method, this toolbox
is further extended. We suppose that with the ongoing advancement of high-performance computing
such methods will facilitate the practical implementation of graph-based expert systems for CAD.

References:
[1] Bertrand, N.; Delzanno, G.; König, B.; Sangnier, A.; Stückrath, J.: On the Decidability Status of

Reachability and Coverability in Graph Transformation Systems, 23rd Intl. Conf. on Rewriting,
2012, pp. 101–116.

[2] Cook, D.J.; Holder, L.B.: Substructure Discovery Using Minimum Description Length and
Background Knowledge. J. Artif. Intell. Res., 1(1), 1994, pp. 231–255.
http://dx.doi.org/10.1613/jair.43

[3] De la Higuera, C.: A Bibliographical Study of Grammatical Inference, Pattern Recogn., 38(9), 2005,
pp. 1332–1348. http://dx.doi.org/10.1016/j.patcog.2005.01.003

[4] Eichhoff, J.R.; Roller, D.: Designing the Same, but in Different Ways: Determinism in Graph-
Rewriting Systems for Function-Based Design Synthesis, J. Comput. Inf. Sci. Eng., 16(1), 2016, pp.
011006-011006-10. http://dx.doi.org/10.1115/1.4032576

[5] Eichhoff, J.R.; Roller, D.: Genetic Programming for Design Grammar Rule Induction, RuleML 2015
Challenge, the Special Track on Rule-based Recommender Systems for the Web of Data, the
Special Industry Track and the RuleML 2015 Doctoral Consortium hosted by the 9th Intl. Web
Rule Symposium, 2015, pp. 1–8.

[6] Ehrig, H.; Golas, U.; Habel, A.; Lambers, L.; Orejas, F.: M-Adhesive Transformation Systems with
Nested Application Conditions. Part 2: Embedding, Critical Pairs and Local Confluence, Fund.
Inform., 118(1-2), 2012, pp. 35–63. http://dx.doi.org/ 10.3233/FI-2015-1282

[7] Pappa, G.L.; Freitas, A.A.: Towards a Genetic Programming Algorithm for Automatically Evolving
Rule Induction Algorithms, Advances in Inductive Rule Learning, Workshop at the 15th European
Conf. on Machine Learning and the 8th European Conf. on Principles and Practice of Knowledge
Discovery in Databases, 2004, pp. 93–108.

[8] Schmidt, L.C.; Cagan, J.: GGREADA: A Graph Grammar-Based Machine Design Algorithm, Res. Eng.
Des., 9(4), 1997, pp. 195–213. http://dx.doi.org/10.1007/BF01589682

[9] Sridharan, P.; Campbell, M.I.: A Grammar for Function Structures, ASME 2004 Intl. Design
Engineering Technical Conf. and Computers and Information in Engineering Conf., 2004, pp. 41–
55. http://dx.doi.org/10.1115/detc2004-57130

http://www.cad-conference.net/
http://ouky.de/accompanying-materials/cad-2016
http://dx.doi.org/10.1613/jair.43
http://dx.doi.org/10.1016/j.patcog.2005.01.003
http://dx.doi.org/10.1115/1.4032576
http://dx.doi.org/%2010.3233/FI-2015-1282
http://dx.doi.org/10.1007/BF01589682
http://dx.doi.org/10.1115/detc2004-57130

