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Introduction: 
This paper points out the main design goals of a novel representation scheme of geometric-topological 
data, named Linear Algebraic Representation (LAR), characterized by a wide domain, encompassing 2D 
and 3D meshes, manifold and non-manifold geometric and solid models, and high-resolution 3D 
images [1]. To demonstrate its simplicity and effectiveness for dealing with huge amounts of 
geometric data, we apply LAR to the extraction of a clean solid model of the hepatic portal vein 
subsystem from micro-CT scans of a pig liver. 

Technological advances made it possible to acquire large sets of biomedical data at a fast rate and 
affordable costs. In turn, the easiness of producing and collecting data in digital form has triggered a 
progressive paradigm shift from experiments on model organisms to simulation based on virtual 
prototypes and mathematical modeling [5]. 

The capability to extract geometrical models from medical images fosters the development of 
quantitative, evidence-based medicine, where laboratory and clinical observations are cumulated and 
made accessible to integrative research. In the near future, the collected knowledge of multifarious 
physiological subsystems on a hierarchy of dimensional scales and of a variety of biological functions 
will be formalized, catalogued, organized, shared and combined in many ways, providing integration 
across subsystems, temporal and spatial scales, biomedical and bioengineering disciplines, to give rise 
to personalized healthcare. 

Consistently with the availability of quantitative data, the interest in physically-based simulations, 
customary in engineering CAD, is now growing also in medicine, with the clinical aim of getting a 
better understanding of physiology and pathologies on a single-patient basis, using personalized 
models extracted from patient’s body scans. A meaningful example of this trend, akin to the 
application we focus on in this paper (the extraction of the liver portal vein system), is provided by the 
current developments in techniques aiming at providing surgeons with accurate, patient-specific 
guidelines when designing partial hepatic resections for the treatment of liver tumors [2]. 

The rising applications of 3D medical modeling [3], computer-based training of medical doctors, 
computer-assisted surgery, etc. call for the convergence of methods and know-hows from computer 
imaging, computer graphics, geometric/solid modeling, and physical modeling and simulation. Similar 
challenges are posed also by more established endeavors, such as materials science—think of soft 
matter, engineered surfaces, nano-materials and meta-materials—and biophysics, where modeling 
issues range from the molecular/protein level to multi-scale modeling of subcellular organelles, 
cellular structures, tissues and organs. Serious progress in these directions demand major 
innovations, from cooperative collaboration to multi-physics support, where different field equations 
imply different geometric structures at the level of basic descriptive data, to enhanced robustness 
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toward scale mismatch in coupled problems, complexity of the simulation environment, terascale 
number of elementary entities or agents. 

In this paper we show that most common geometric and imaging operations reduce in LAR to 
simple compositions of linear operators, implemented by sparse matrix multiplication and 
transposition, possibly supported by advanced graphics hardware. We expect this approach to be 
beneficial for producing the CAD tools of the next generation, capable to face the challenge posed by 
the treatment of big geometric data, when solid models are to be derived from 3D and 4D high-
resolution images. A sample application of this sort is presented and discussed.  

Linear Algebraic Representation: 
A representation scheme is a mapping between the mathematical spaces to be represented by a 
computer system and their symbolic representation in computer memory [4]. The Linear Algebraic 
Representation (LAR) scheme [1], uses Combinatorial Cellular Complexes (CCC) as its mathematical 
domain, and various compressed representations of sparse matrices as its codomain. 

Since LAR provides a complete representation of the topology of the represented space, the matrix 
[∂d] of the boundary operator may be used to compute the coordinate representation [∂d c] of the 
boundary chain of any collection c of cells, through a single operation of SpMV multiplication between 
the CSR (Compressed Sparse Row) representation of [∂d] and the CSC (Compressed Sparse Column) 
representation of the [c] chain. 

Importantly, the matrices of coboundary operators [δ0], [δ1], and [δ2], computable in the LAR scheme 
by means of multiplications between sparse matrices, provide respectively the discrete gradi- ent, curl, 
and divergence on the given space decomposition. The Laplacian operator ∆ is computed as a 
combination of boundary and coboundary operators. Last but not least, the standard operators of 
mathematical morphology on images (dilation, erosion, opening and closing) are obtained by product of 
sparse matrices of topological incidences times sparse matrices of boundary and/or coboundary. 
The first important concept introduced by LAR is the definition of the model of a cell complex, as 
composed of a list of vertices, each of which is given as a list of coordinates, and by one or two 
topological relations.  

 
Definition 1 (LAR model). A LAR model is either a pair V,FV, or a triple V,FV,EV, where: 
1. V is the list of vertices, given as lists of coordinates; 
2. FV is a cell-vertex relation, given as a list of cells, where each cell is given as a list of vertex 

indices;  
3. EV is a facet-vertex relation, given as a list of cells, where each cell is given as a list of d vertex 

indices and facet stands for (d − 1)-face of a d-cell. 
 

 
(a)                                                     (b)                                                     (c) 

 

Fig. 1: (a) LAR model with 0−, 1−, and 2−cells; (b) the triple V,FV,EV of vertices, faces and edges 
(indexed on vertices); (c) the extracted boundary. Note that 2-cells have different numbers of vertices, 
and may be non-convex. 
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Several basic representations of topology are used in the LARCC library, including some common 
sparse matrix representation: CSR (Compressed Sparse Row), CSC (Compressed Sparse Column), COO 
(Coordinate Representation), and BRC (Binary Row Compressed).  

A BRC representation is an array of arrays of integers, with no requirement of equal length for the 
component arrays. The BRC format is used to represent a (typically sparse) binary matrix. Each 
component array corresponds to a matrix row, and contains the indices of columns that store a 1 
value. Zero values are not stored. 

 
Fig. 2: The binary characteristic matrix M2 (centre) of the cellular complex in Figure 1 and its BRC (left) 
and CSR (right) representations. 

 
Solid boundary representations: The representation scheme of topology most frequently used by 

solid modelers is a decompositive representation of the boundary, to be coupled with a meshing of the 
interior just in case of need. The boundary is usually decomposed into faces, with face boundaries 
represented in turn by a decomposition into edges, given as pairs of vertices. In the case of manifold 
representations, storing only a subset of the binary incidence between such boundary elements is 
sufficient. Usual non-manifold representation relations include by necessity some set of pointers 
between incident pairs of boundary elements, usually circularly ordered to discriminate locally 
between interior and exterior, so doubling (at least) the storage size of the representation. 
Contrariwise, LAR includes only lists of cells as unordered lists of vertex indices, and manages equally 
well both manifold and non manifold models. 

Comparison: The common reference term for comparing the memory requirement of solid bound- 
ary representations in 3D is the Winged-Edge scheme by Baumgart, which makes use of relation tables 
with a storage occupancy 8|E| + |V| + |F|, where F, E, V stand for the sets of boundary faces, edges and 
vertices, respectively. An equivalent LAR representation of topology of the boundary of a 3D solid (B-
rep) needs only the storage of the CSR(M2) sparse matrix, corresponding to the FV incidence relation, 
and the computation of the CSR(M1) sparse matrix, to obtain the EV relation, for a total memory size of 
2|E| + 2|E|, according to [6]. 

LAR of Images: 

In this section we mainly discuss how to map a d-image, with normally d   {2, 3}, to the coordinate 
representation of chains (collections of voxels) within the linear space Cd generated by the cellular 
complex corresponding in (generalized) row-major order to the image voxels, using LAR. 

From d-images to chains and cochains: In order to generate the coordinate representation of a 
chain in a multidimensional image (or d-image), we choose a basis of image elements—i.e., of d-cells—
and a total ordering of image voxels, then map the multi-index identifying each d-cell to a single 
integer, so labelling the cell with its ordinal position within the chosen basis ordering. Assuming that 
vertices are located on a 3D lattice of points with integer coordinates, it is easily seen that an explicit 
storage of coordinates is not required, because of an explicit bijective mapping µ between the ordinal 
index of cells and the tuples of coordinates of their vertices. 
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Our model of a d-image is a cuboidal grid with integer coordinates. Every d-cell is identified by a d-
tuple of integer coordinates, mapped to a single integer, in order to compute the basis vector 
corresponding to the cell in the linear space C3 of chains of 3-cells (voxels). 

 

Fig. 3: The exterior and a cross-section of the portal vein system through the liver sample (top). Images 
of a vein interior (bottom). Note the mesh of quadrilaterals. 
 
Let us remark that the matrix [∂3] of the boundary operator C3 →  C2, used to compute the boundary of 
any possible subset of voxels, i.e., of any vector in the linear space C3 of 3-chains associated with the 
image, depends only on the image shape (n0, n1, n2), and may be computed once for all (choosing a set 
of standard image shapes), and stored or transmitted accordingly. Since the bottleneck of GPGPU 
implementations lies in the moving of data from global to local memory, our solution is to store the 

(sparse) matrix operator [∂3] of n3 voxels, with n   {64, 128, 256}, in Constant Memory, and move just 
the (binary) coordinate vectors of chains in Private Memory. The boundary computation is therefore 
done by partitioning the image, according to the paradigm divide et impera. 

Imaging Morphology: In this section we show how to implement with LAR the four operators of 
mathematical morphology, i.e., dilation, erosion, opening and closing, by way of matrix operations 
representing a composition of the linear topological operators of boundary and coboundary with other 
incidence relations. We give here just a few hints of these computations. Thanks to its multi-
dimensional nature, the LAR implementation of morphological operators is dimension-independent. 

Extraction of models from images: Biomedical applications require fast performance with big 
geometric data, for topological tasks such as model extraction from 3D images. In medical images 
density values represent scalar fields (cochains) over cubical cellular complexes, and LAR is used to  

guarantee topologically correct 3D image segmentation as well as to extract (enumerative) solid 
models subsequently smoothed out via Laplacian smoothing. This approach has the nice feature that 
the entire image is partitioned into a set of cochains associated with field values, including the 
interstitial space, thus providing a well-defined mesh both of the relevant features and of their outer 
space. 

The stored content of any image chain (subset of image elements; either pixels or voxels) shall be 
seen as a cochain associated to the given chain, and its discrete integrals (e.g. the volume, or surface 
area, or inertia moments) or other chains to be computed by means of discrete differential operators, 
shall be computed accordingly, by the proper SpMspV multiplication, taking appropriate benefits by 
advanced computational hardware, e.g., by GPGPU methods. 
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Extraction of the liver portal vein system Venous systems are called portal when a capillary bed 
pools into another capillary bed through veins, without first going through the heart. The hepatic 
portal system is the system of veins comprising the liver portal vein and its tributaries. The liver is a 
vital organ of all vertebrates. In turn, hepatic vasculature is essential to the liver function. A good 
assessment of individual liver vasculature is preliminary to hepatic surgery. While the macroscopic 
structure of the hepatic vasculature is well studied, the microvasculature is not yet fully understood. 

The present work is part of a collaborative effort with a Czech research team [2] based at the 
University of West Bohemia and the Charles University, integrating specialists in biomechanics, 
biophysics, informatics, liver surgery, radiology, and histology. We aim at increasing both the scope 
and the resolution of 3D liver imaging —an arduous goal, but crucial to enhance our understanding of 
liver lobule anatomy and function. 

 
Conclusion:  
This paper demonstrated that LAR — a general-purpose framework for solid and geometric modeling 
— has the capability of generating topologically valid and geometrically accurate boundary models. 

Our prototype implementation of LAR is an integral part of a permanent effort to rethink the 
foundations of solid modeling, aiming at simplifying and generalizing its data representation and 
disentangling its main algorithms, in order to produce a computational framework well adapted to the 
“new world” of big geometric data over cloud- and web-based infrastructures. This long-term project 
has already achieved some tangible results in applications to the extraction of solid models from 3D 
medical images (as documented in this paper) and to the simplified generation of building models for 
indoor mapping and the Internet of Things. 

In conclusion, we would like to remark that any model mesh, either of the interior or the external 
surface, using either unstructured (triangle, tetrahedra) or structured (quadrilaterals, hexaedra) or 
more general convex cells, can be stored on computer media, and transmitted on communication 
networks, using LAR as efficient representation of topology and as support for curved geometry. 

We see great opportunities in this project: (i) LAR uses just arrays of signed integers, instead of 
complicated data structures, to describe 1D/2D/3D/4D/... meshes/images and topologies of any sort 
and size; (ii) whenever necessary, LAR uses distributed algorithms of MapReduce kind; (iii) it is based 
on the well-established conceptual infrastructure of algebraic and combinatorial topology. 
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