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Introduction: 
Structural changes in the optic nerve head (ONH) have been associated with the development of 
glaucomatous optic neuropathy, in particular, expansion of the optic cup due to loss of neuroretinal 
tissues and remodeling of the underlying lamina cribrosa, motivating a quantitative analysis of ONH 
morphology. Cup depth is a useful measure that reflects the anatomical changes seen in glaucoma [9] 
and can be calculated based on the shape of the internal limiting membrane (ILM).  This paper 
considers the computation of mean cup depth. Unlike previous studies that have computed cup depth 
directly from images [10], from few samples [8], or that assess cup depth qualitatively rather than 
quantitatively [6], we build a full shape model of the ILM from dense point clouds.  We also use 
algorithms from shape modeling to build reference structures and to measure cup depth, as opposed 
to using manual measurements. 

To measure depth, a reference structure is necessary.  A reference plane based on Bruch's 
membrane (BM) has been used in both clinical and histological studies against which to measure depth 
in the ONH (Fig. 1b,c).  The opening of Bruch's membrane (BMO), the inner boundary of Bruch's 
membrane at the anterior end of the neural canal, is nearly planar and nearly elliptical, making it a 
good candidate for a reference structure.  An alternative reference structure may be defined using the 
anterior sclera, which might be more stable than the Bruch structure [5].  For simplicity, we use the 
Bruch reference structure in this extended abstract.  Bruch cup depth (Fig. 1c) is the signed distance of 
an ILM point from the best-fitting plane of BMO (called the BMO plane), positive if the ILM point lies on 
the same side as the lamina cribrosa, which always lies strictly on one side of the BMO plane. 
Measurement of cup depth should be constrained to the region over the ONH.  The BMO again offers a 
natural mechanism to formalize this constraint: the BMO cylinder is the right elliptical cylinder 
defined by the best-fitting ellipse of BMO (called the BMO ellipse), and only ILM samples that lie within 
the BMO cylinder are considered during the computation of cup depth. 

The goal of this paper is an algorithm for the computation of mean cup depth, an important and 
computationally interesting measurement. After describing the structure of an ONH dataset, we 
discuss mean cup depth and its two major components: computation of the Bruch reference structure 
that is used to measure depth, and construction of the underlying ILM mesh that is used to sample 
cup depths.  We finish by evaluating the accuracy of our algorithm using synthetic datasets. 
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Computational aspects: 
ONH dataset 

The ONH is modeled from an ONH dataset with a unique structure, a collection of several independent 
point clouds each organized into radial planar sections sharing a rotational axis (Fig. 1a).  This is in 
contrast to the usual structure of point clouds in shape modeling as either unorganized points or 
point clouds organized into parallel sections (as in CT/MR imaging and topographical maps).  A radial 
slicing is natural for the optic nerve head, since the locus of interest is near the center of the volume, 
where radial slices concentrate the data.  The radial sections are manually segmented from spectral 
domain optical coherence tomography (SDOCT) images by trained observers (Smith and Wang) [1], 
yielding separate point clouds for the categories of interest in the ONH: for Bruch cup depth, these are 
the ILM and BM.  The radial sections are oriented consistently by ensuring that the rays from first to 
last point of consecutive sections differ by less than π/2.  To simplify mesh construction, the oriented 
sections are split into half-sections at the axis of rotation.  The orientation of the second half-section 
is flipped so that all half-sections end at the axis. 

 

 
 

Fig. 1: (a) The internal limiting membrane (red) and Bruch’s membrane (blue) point clouds of a typical 
ONH dataset. Note the radial structure. (b) The Bruch reference structure. The BMO ellipse is shown 
with the BM (blue). The BMO ellipse lies in the BMO plane.  The axis of the BMO cylinder is also shown.  
(c) Bruch cup depth.  The ILM (red) and BMO plane (black): the cup depth of a point of the ILM is its 
signed distance from the BMO plane. 

 

The radial nature of the ONH dataset leads to some interesting challenges.  Care must be taken 
that sampling is not biased towards the center (if mean statistics are of interest as here), shape 
degeneracies can exist near the rotational axis, and an ONH dataset does not represent a manifold 
surface (the sections do not cross the axis at a common point) due to the noise inherent to the 
segmentation.  Fortunately, the topology of the ONH is simple and known, so the challenges are with 
geometry and not with topology. 

Mean cup depth 
A robust computation of mean cup depth requires a good sampling of cup depths. An ILM surface (a 
triangle mesh) is reconstructed from the ILM point cloud and this surface is sampled. Although mean 
cup depth suggests using a uniform sampling of this ILM surface, a perfectly uniform sampling is 
impossible (otherwise this sampling would define a regular polyhedron). One idea we tried was to 
transfer a uniform sampling of parameter space to the mesh using a distortion-minimizing 
parameterization, as explored in texture mapping [4], but this was challenging and proved inferior to a 
weighted sampling.  We found that an excellent algorithm to compute mean cup depth is to sample at 
the triangle centroids of the ILM mesh and weight by area: 

meanCD =
area(T )

area(M )
T

å CD(centroid(T ))                                              (2.1) 

The sum ranges over all triangles T of an ILM mesh M that has been clipped to the BMO cylinder.  The 
construction of the ILM mesh is considered below. 

The computation of cup depth is simplified by working in a special coordinate frame.  A Bruch 
frame is a coordinate frame whose origin is the center of the best-fitting ellipse of the BMO, z-axis is 
normal to the BMO plane, and z>0 half-space is the half-space of the BMO plane that contains the 
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lamina cribrosa.  In a Bruch frame, the cup depth of an ILM point is simply its z-coordinate.  Since 
structural changes in the optic nerve head may be localized, mean cup depth is also measured by 
quadrant (superior, temporal, inferior, nasal). 

 
Bruch reference structure 

The BMO plane and ellipse (Fig. 1b,c) are computed using principal component analysis [2].  Let 

B={b1,…,bn} be the BMO point cloud with mean b  and covariance matrix M=

 	

1

n
(b

i
-b)(b

i
-b)t

i=1

n

å .  The 

eigenvector of M associated with the smallest eigenvalue defines the normal of the best-fitting plane of 

B (as the direction of minimal variance of the point cloud) and the best-fitting plane passes through b .  

The eigenvector of M associated with the largest (resp., middle) eigenvalue defines the direction of the 
major (resp., minor) axis of the best-fitting ellipse.  Eigenvectors may be computed robustly in C++ 
using the Eigen numerical library.  The BMO ellipse will be fully defined once its axis lengths and 
center are known.  Note that the sample mean is not the center of the BMO ellipse, since the point 
cloud is not uniformly sampled.  Since the BMO point cloud B lies close to its best-fitting ellipse, the 
axis lengths may be found by projecting B onto each principal axis and using the range of these points 

to define the semi-axis length.  The sample mean b  is adjusted to the ellipse center by projecting it 

onto each principal axis, along with the extreme points on that axis, to determine how much b  must 

be adjusted to lie midway on each axis. 

 

 
 

Fig. 2: An ILM mesh, a minimal surface area reconstruction from a resampling of the ILM half-sections.  

 
ILM mesh 

A robust ILM mesh (Fig. 2) is required for mean cup depth, and the construction of a robust mesh 
requires a robust sampling.  Sections are oversampled in some areas and undersampled in others, 
prompting the construction of an interpolating curve before resampling.  The oversampling 
complicates this construction.  The solution is to downsample, then interpolate, then upsample.  Each 
ILM section is downsampled, using a variant of Douglas-Peucker decimation: while walking around the 
section, samples are removed whenever they preserve the invariant that every original sample is within 
a prescribed distance of the polygon defined by the downsampling.  The tolerance is chosen to be 
.0001 of the radius of the ONH dataset’s bounding box.  The samples of the downsampled section are 
reliable for the construction of an interpolating cubic B-spline curve, which is then uniformly sampled 
for the desired robust sampling.  The resampled section is then clipped to the BMO cylinder.  A mesh 
is built from the clipped half-sections using the contour reconstruction algorithm of Fuchs, Kedem 
and Uselton [3].  This algorithm uses minimal surface area as the constraint, and reduces this 
optimization to the construction of a shortest path in a toroidal graph built from neighbouring half-
sections.  Here we see another advantage of using half-sections: they enforce the constraint that points 
on the axis of rotation must correspond. 
Synthetic datasets 
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An attractive way to evaluate the accuracy of our computation of mean cup depth is by running the 
algorithm on synthetic datasets for which the correct value can be computed analytically using 
integration.  Various synthetic ILM surfaces were built by sampling mathematical functions that mirror 

the shape of the ILM: the Gaussian , even Gabor , 

odd Gabor , sinc  , and cosine .  The BM 

was built so that the BMO plane and ellipse define a clean domain of integration for the ILM surface.  
With a small modification to our computation of mean cup depth, replacing the areas in Eqn. (2.1) by 
the area of their projections onto the BMO plane, our computation reduces to the ratio of a volume to 
an area: the volume of the ILM under the BMO plane divided by the area of the BMO ellipse.  Therefore, 
this new computation can be compared against a numerical integration using MATLAB, since the ILM is 
a known mathematical surface.  By varying the ILM surface and the size and height of the BMO ellipse, 
many different synthetic datasets were built and tested. 

Tab. 1 compares the result from MATLAB integration with the result computed by our algorithm 
on a set of synthetic datasets.  Along with varying the type of mathematical surface, the parameters of 
the ILM surface may be adjusted (the standard deviation  of the underlying Gaussian or the 

frequency  of the underlying cosine or sine) and the domain of integration may be adjusted (by 

changing the radius of the BMO cylinder and the height of the BMO plane, parameters r and z in Tab. 
1). The percent relative error is also reported: the percent relative error of a computed solution  

from the true solution is .  All these results are accurate to at least 3 decimal places with 

very low relative error. 

 

Function     r z MATLAB 
integration 

Our algorithm % relative error 

Gaussian .7  1 -1 1.2036 1.20359 .00083 % 

Gaussian .5  2 -1 1.0796 1.08042 .076 % 

even Gabor .6 10 2 -.5 .4977 .497726 .0052 % 

even Gabor .8 8 2 -.5 .4979 .498001 .020 % 

odd Gabor .6 10 2 -.5 .4999 .49988 .0040 % 

sinc   20 -2 2 2.00303 .15 % 

cosine  3 3 -2 2.0444 2.04409 .015 % 

 
Tab. 1: Results on synthetic datasets using integration vs. our algorithm. 

 

Along with this evaluation against synthetic datasets, the components of the C++ code were rigorously 
tested.  An alternative way to build synthetic datasets was also tested, by firing rays at an algebraic 
surface . 

 
Conclusions: 

Our computation of cup depth has been used to analyze correlations between cup depth, race, and age 
[7].  This experience with the computation of mean cup depth has revealed the importance of cleaning 
the data, building a robust surface model for key anatomy, computing a robust reference structure, 
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and using special reference frames during computation.  The centrality of sampling is striking:  a 
robust sampling of the ILM sections leads to a robust ILM mesh, which leads to a robust sampling of 
cup depths for mean depth.   

The potential applications of shape modeling to the morphometry of anatomy are rich.  The 
algorithms for mean cup depth in the optic nerve head developed in this paper are but one case study.  
In present and future work, we are considering a wider assortment of statistics for ONH morphometry, 
including volume, thickness, and curvature, and the alignment of a pair of ONH datasets for rigorous 
quantitative comparison. 
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