
87

Proceedings of CAD’14, Hong Kong, June 23-26, 2014, 87-89
© 2014 CAD Solutions, LLC, http://www.cad-conference.net

Title:
Applying Database Optimization Technologies to Feature Recognition in CAD

Authors:
Zhibin Niu, mind3str@gmail.com, Cardiff University, UK
Ralph Martin, ralph@cs.cf.ac.uk, Cardiff University, UK
Malcolm Sabin, malcolm.sabin@btinternet.com, Numerical Geometry Ltd., UK
Frank C Langbein, frank@langbein.org, Cardiff University, UK
Henry Bucklow, jhb@transcendata.com, TranscenData Europe Ltd. UK

Keywords:
Computer-aided design, feature recognition, database optimization

DOI: 10.14733/cadconfP.2014.87-89

Introduction:
Feature recognition is important in analysis or simulation based on a CAD model [1]; this is done by
first meshing the model. Real industrial models normally have many small details, and in many cases,
their effect on analysis is minor. Suppressing such details allows meshing to be both quicker and more
robust [2, 3], and as a sparser mesh with larger elements results, the time needed for analysis is re-
duced. Feature recognition can help to find candidates for removal. In computer-aided manufacturing
(CAM), computer-aided process planning (CAPP) uses use feature information to generate a sequence of
instructions to manufacture a model [2]. Finding features by hand is tedious: automatically finding
features as candidates for removal is preferable. Much research has been devoted to this topic [3].

Main Idea:
Our approach to feature recognition is based on a high-level declarative feature definition language,
which allows users to define new kinds of features to be found. The users merely need to specify what
constitutes a feature, rather than a specific algorithm for finding instances of it. Different applications
need different definitions of features: parts of a shape which are important for machining may be quite
different to those which can be ignored for analysis for example: features important for heat analysis
may be quite different from those for electrostatic analysis. Thus, it is infeasible to hard-code all pos-
sible useful features and this must be left to engineers. Our declarative approach has the benefit of
allowing the engineers to concentrate on what constitutes a feature rather than how to find it.
 In our system, the definition is turned into an SQL query, and a database engine is coupled to a
CAD modeler to find instances of entities satisfying the predicates which make up features. The pur-
pose of this paper is to show that such an approach is feasible, and that in particular, the built-in da-
tabase optimization techniques can effectively execute the query in an acceptable time to find features–
without optimization, such a declarative form would be far too slow. Database optimization techniques
automatically determine a suitable set of sub-queries and an appropriate order to execute them in. We
compare this approach with optimization techniques proposed by Gibson [4], who also used a declara-
tive approach, but not based on a relational model.
 To test the ideas above, we have implemented a feature finder which integrates the SQLite data-
base engine and CADfix [5] modeler–see Fig.1. The feature finder works as a front-end to the CAD
modeler, which reads in the CAD model in which features are to be found. The feature finder reads in
feature definitions, and converts requests to find such features into an SQL query. The query planner
in the database engine transforms the query into a simpler set of sub-queries, using an optimization
strategy to choose the expected cheapest approach based on estimated cost. These sub-queries are
then executed, reporting all instances of the defined feature in the model. A tokenizer and parser read

http://www.cadconferences.com/
mailto:ralph@cs.cf.ac.uk
mailto:malcolm.sabin@btinternet.com
mailto:frank@langbein.org

88

Proceedings of CAD’14, Hong Kong, June 23-26, 2014, 87-89
© 2014 CAD Solutions, LLC, http://www.cad-conference.net

feature definitions and execute other commands such as OPEN model, DEFINE type, LOAD / SAVE defi-
nition, FIND feature, DRAW result. Features are defined using entities and predicates; note that the
same feature can be defined in multiple ways. These definitions can also be translated into SQL in dif-
ferent ways. The general form of feature definition we adopt is shown in Fig.2. After naming the fea-
ture, various entities are defined: they may be low-level components of the model such as vertices,
edges, and faces; they may also be sub-features e.g. a CYLINDRICAL HOLE. Each entity has a given type
which restricts the search domain of the feature, e.g. e1, e2: EDGE means all edges of the model should
be considered as candidates for e1 and e2. The predicates indicate relationships that the entities
should satisfy. Each predicate refers to one or more entities. Typical unary predicates concern geomet-
ric properties, e.g. CONVEX(e1). Binary predicates concern relationships between entities, e.g.
BOUNDS(f1, e1). Externally visible entities are defined after EXPORT when this type is used as a sub-
feature.

CAD ModelerLocal cache

Tokenizer/Parser

Translator: Definition to SQL

Generate subqueries

Plan and optimise execution

Featu
re Fin

d
er

D
atab

ase en
gin

e Execute SQL

Results

Feature definition and command language

 Fig. 1: Architecture of the feature finder. Fig. 2: Declarative feature definition.

To test the ideas, SQLite was modified to switch various query optimizations (re-ordering joins, index-
ing, subquery flattening) on and off. A series of experiments using both carefully constructed artificial
models and real industrial models has been carried out to see if this approach is viable, and the extent
to which various optimizations help. We have investigated how the feature finding time varies with the
size of the model, the number of instances of the feature in the model and the number of entities in
the feature. We have also compared the optimizations available to those considered by Gibson [4].

Conclusions:
Results show that, as hoped, database optimization provides significant benefits to the time taken to
find features (e.g., for notch features, the observed scaling complexity of the algorithms is reduced to
about O(n2) from O(n6), where n is the number of edges in the model. However, optimization does not
always provide the best result: different ways of defining the same feature have different performance
even after optimization. Future work will consider databases with more powerful optimization, and
the benefits of indexing.

Acknowledgements:
This work was financially supported by the Framework Program 7 Initial Training Network Funding
under Grant No. 289361 "Integrating Numerical Simulation and Geometric Design Technology."

http://www.cadconferences.com/

89

Proceedings of CAD’14, Hong Kong, June 23-26, 2014, 87-89
© 2014 CAD Solutions, LLC, http://www.cad-conference.net

References:
[1] Lee, K., et al.: A small feature suppression/unsuppression system for preparing B-rep models for

analysis, in Proceedings of the 2005 ACM symposium on Solid and physical modeling, 2005.
ACM. http://dx.doi.org/10.1145/1060244.1060258

[2] Han, J.; Pratt, M.; Regli, W. C.: Manufacturing feature recognition from solid models: a status re-
port, IEEE Transactions on Robotics and Automation, 16(6), 2000, 782-796.
http://dx.doi.org/10.1109/70.897789

[3] Babic, B.; Nesic, N.; Miljkovic, Z.: A review of automated feature recognition with rule-based pat-
tern recognition, Computers in Industry, 59(4), 2008, 321-337.
http://dx.doi.org/10.1016/j.compind.2007.09.001

[4] Gibson, P.; Ismail, H.; Sabin, M.: Optimization approaches in feature recognition, International
Journal of Machine Tools and Manufacture, 39(5), 1999, 805-821.
http://dx.doi.org/10.1016/S0890-6955(98)00068-6

[5] TranscenData Europe Ltd., CADfix 9.0. http://www.transcendata.com/products/cadfix.

http://www.cadconferences.com/
http://dx.doi.org/10.1145/1060244.1060258
http://dx.doi.org/10.1109/70.897789
http://dx.doi.org/10.1016/j.compind.2007.09.001
http://dx.doi.org/10.1016/S0890-6955%2898%2900068-6
http://www.transcendata.com/products/cadfix

