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Introduction: 
Topology Optimization (TO) [1-4] is a design process used to explore new designs by optimally 
distributing material in the design region. The best designs are achieved in accordance with the 
objectives and constraints defined for a specific application. Since the pioneering works by Bendsoe 
and Kikuchi [2], TO methods have been applied to various physical systems, including electromagnetic 
devices and machines [1,3]. 

In this study, we present a multi-objective approach for TO that uses multi-objective evolutionary 
algorithms [6]. The first stage consists of applying a multi-objective Ant Colony Optimization (ACO) to 
find tradeoff topologies with different material distributions. In the second stage, we parameterize the 
boundaries of the topologies found by using NURBS. Multi-objective genetic algorithms are applied as 
a heuristic optimization engine to optimize the control points of the curves in order to smooth and 
refine the boundaries of the topology. The main advantage of this multi-objective approach is that the 
designer can identify, explore and refine a number of tradeoff topologies. The proposed methodology 
is illustrated in the design of an Interior Permanent Magnet (IPM) machine [5].The design region of a 
TO problem is represented by a finite and bounded d-dimensional subset Ω⊂ℝd , with d = 2 or 3, in 
which c∈Ω denotes a cell within this geometric space. Each cell c is associated with one of n possible 
states. After the state of a given cell is considered to be the material properties at that point, the 
general multi-objective TO problem can then be defined as the problem of finding the optimal 
distribution of material in the cells of the design region that minimizes the objective functions while 
satisfying the problem constraints, which are mathematical representations of the system 
requirements and limitations. 

Main idea: 
In the proposed approach we extend the ACO method first described in [1] to solve multi-objective 
topology problems. Although a number of studies have examined the use of genetic algorithms for 
topology optimization, the definition of a suitable representation for the genome and genetic 
operators is very cumbersome. With ACO, we can represent the design region as a grid and the 
allocation of material as a graph in this grid, thus reducing topology optimization to the problem of 
finding an optimal route in this graph. The resulting topologies represent tradeoff topology designs 
that are approximations of the Pareto-optimal solutions of the multi-objective TO problem. These 
topologies are coarse initial designs that should be smoothed and refined; nonetheless, the designer 
can obtain an initial overview of the design possibilities. 

Next, after the designer chooses one topology from the tradeoff set, we use a boundary detection 
algorithm to identify the boundaries of the regions with different materials. The points along each 
boundary are used to fit and define a NURBS curve for that boundary. The control points of the curves 
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are then optimized by means of multi-objective GA, using the same objective and constraint functions 
as in the original problem. In this way, another set of tradeoff solutions is generated around the 
topology chosen by the designer. This new Pareto front represents possible refinements of the initial 
coarse topology identified in the previous stage. The final design can be selected from among the 
tradeoff solutions by using any decision-making methodology. The designer can go back to the 
solutions identified in the first stage, select another topology from this set and apply NURBS 
parameterization and GA optimization to this topology in order to analyze other design alternatives. 

The research described in [5] addresses the optimization of an Interior Permanent Magnet (IPM) 
machine design based on field solutions calculated by means of the Finite Element Method (FEM)  
using a single objective optimization. The goal of the design is to find an optimal material distribution 
that maximizes the output torque of the machine, while minimizing the volume of the permanent 
magnet. The cost of the permanent magnet material is related to the volume of PM in the machine, and 
it accounts for a significant part of the cost of the IPM machine due to the high price of this rare earth 
material. On the other hand, the permanent magnet increases the output torque. This leads to an 
obvious tradeoff between maximizing the torque in the machine and minimizing the volume of the 
permanent magnet material used in the design, leading to a multi-objective TO problem. 

The design starts with an empty rotor that is divided into many small cells. Each cell can be filled 
with one of three different materials: air, iron (M19 stainless steel) and permanent magnet (DfES). In 
this case, the design domain is a 5x18 grid, as shown in Fig. 1(a). Based upon symmetry, the 
considered region is half of this in size, i.e., a 5x9 grid. This discretization of the IPM design domain 
facilitates presenting an approximated structure of a physical device. The tradeoff topologies found by 
the proposed multi-objective ACO are shown in Fig. 1(b), where the axes are the negative torque in the 
machine and the volume of the permanent magnet material. Fig. 1(c) illustrates two alternative designs 
from the Pareto-optimal front. 
 

 
 
Fig. 1: (a) Discretization of the domain region for the IPM machine design example. (b) Estimated 
Pareto-optimal front for the IPM machine design example. (c) Two alternative topology designs from 
the Pareto-optimal front. 

Conclusions: 
This study has described an approach that integrates topology and shape optimization. This approach 
is capable of handling problems that involve the distribution of several materials in a design domain. 
The representations used are simple and the results are given in parametric models based on NURBS 
curves. With a suitable choice of parameters, the NSGA-II was able to improve the results obtained by 
the MOACO algorithm, thus demonstrating the adequacy and usefulness of the proposed approach to 
multi-objective electromagnetic topology optimization. 
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