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Introduction: 
With the more progress of CG software and hardware technology and growing demand of CAD 
application, the 3D scene objects and the complexity of the model increases rapidly, the realistic 
demand of rendering was extremely increased, the display resolution appears exponential increase. 
According to above characteristics of huge amount volume in spatial data processing, researching the 
problem that applying high performance parallel computing especially non-traditional model to 
practical solving process of large sparse matrices equations, which will have important significance for 
performance calculation of speeding up CAD system. 

As we all know, the linear system may be solved by a direct solver based on a factorization of the 
sparse matrix (Gauss eliminations), which is known to be robust. However, the Gauss eliminations lack 
of inherent parallelism, and their O(n2) complexity of memory cost and O(n3) complexity of 
computational cost make them very expensive for solving large problems. So people turn to other 
methods and try to deal with sparse linear systems by taking the advantage of the sparse structure in 
the coefficient matrices, including LU factorizations (ILU(k), ILUT), other variants of multilevel ILU pre-
conditioners, Sparse Approximate Inverse (SAI) and its developed versions, Multistep Successive 
Preconditioning strategy (MSP) and so on. 

In this paper, we studied the use of the Multistep Successive Preconditioning strategies (MSP) based 
on the sparse approximate techniques that computes a sequence of low cost sparse matrices to 
achieve the effect of a high accuracy pre-conditioner, because of the inherent parallelism provided by 
the MSP algorithm, we do not need to use an independent set search related strategy to form the 
multilevel structure, which may be difficult to implement on parallel CAD computing systems. So a 
new parallel multilevel MSP pre-conditioner is presented, at each level, we use a diagonal value based 
strategy to permute the matrix into a 2 by 2 block from. During the preconditioning phase, we do 
forward and backward preconditioning to improve the performance of the pre-conditioner. Compared 
with the linear CAD computing systems, forward and backward preconditioning strategy is used in the 
pre-conditioner application (solution) phase to improve the performance of the resulted multilevel 
pre-conditioner.  

Pre-conditioner Construction: 
The convergence rate of a Krylov subspace solver applied directly to the linear matrix may be slow due 
to the potential ill-conditioning of the matrix A. In order to speed up the convergence rate of the 
iterative methods, we may transform Ax b=  into an equivalent system: 

MAx Mb=                                                                                                 (1) 

where M is a nonsingular matrix of order n. If M is a good approximation to 1A−  in some sense, M is 
called a sparse approximate inverse of A. Then MA can be a good approximation to the identity matrix 
I. It follows that the equivalent system (1) will be easier to solve by a Krylov subspace solver. 
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The multistep successive preconditioning strategy can be applied to almost any of the existing 
sparse approximate inverse preconditioning techniques, including multistep successive 
preconditioning, multilevel preconditioning and multilevel pre-conditioner based on the MSP strategy. 
Then the MSP algorithm will create a series of matrices: 

1

1 1l lM M M D  

−

−                                                                                               (2) 

where l is the number of steps. 

Implementation details: 
The success of general sparse linear system solvers depends on sophisticated implementations as 
heavily as on the innovative underlying ideas. In this section, we discuss several implementation issues 
that need to be addressed to build efficient software for distributed memory parallel computers. 

To solve a sparse linear system on a parallel computer, the coefficient matrix is first partitioned by 
a graph partitioner and is distributed to different processors uniformly. Supposing initially the matrix 
is distributed row by row in each processor, where the coefficient matrix A is distributed in 4 
processors. The shaded parts

mA , m = 1,….,4, in the figure form the block diagonal of A. From the view 

of graph partition, 
mA can be called the local matrix of the processor

mP . And the entries of 
mA are the 

local elements of the processor
mP . 

Experimental discussion: 
Convection-diffusion problem: A 3D convection-diffusion problem (defined on a unit cube). 

1000( ( , , ) ( , , ) ( , , ) ) 0xx yy zz x y zu u u p x y z u q x y z u r x y z u+ + + + + =                                               (3) 

is used to generate some large sparse matrices to test the scalability of multilevel MSP. Here the 
convection coefficients are chosen as: 

( , , ) ( 1)(1 2 )(1 2 )

( , , ) ( 1)(1 2 )(1 2 )

( , , ) ( 1)(1 2 )(1 2 )

p x y z x x y z

q x y z y y z x

r x y z z z x y

= − − −

= − − −

= − − −

                                                                                           (4) 

The Reynolds number for this problem is 1000. Eq. (3) is discretized by using the standard 7-point 
central difference scheme and the 19-point fourth order compact difference scheme. The resulting 
matrices are referred to as the 7-point and 19-point matrices respectively. 

 

level                size density        iter        setup        solve         
total 

            2                  
4692  

5.13         1843        22.5         417.1       
439.6     

4                    524 6.88          238         18.0           71.8         
89.8      

6                     60 6.86          140         17.3           41.8         
59.1  

8                      8 6.86          137          17.3          40.1         
57.4 

 
Tab. 1: Solve the matrix (n = 14075) with different levels; ratio = 0.67, step = 3,  = 0.02. 

 
Reduction ratio and number of levels: The sizes of the current level matrix and the next level (reduced) 
matrix are decided by the reduction ratio. Reduction ratio is an important parameter for deciding the 
number of levels and influencing the property of the multilevel. 

 
Comparison of MSP and multilevel MSP: This experiment gives a few experiment results for using MSP 
and MMSP to solve a few different matrices. For MSP, we adjust the parameter   and number of steps 

and try to give the best performance results for solving these matrices. For all results of multilevel MSP 
we fix the reduce ratio to be 0.67,  to be 0.05, the number of steps at each level to be 2 and the 
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number of forward and backward iterations to be 5. The number in the parentheses of MSP is the 
number of steps, and the number in the parentheses of multilevel MSP is the number of constructed 
levels. 

 

 
 
Fig. 1: Convergence behavior of multilevel MSP using different number of forward and backward 
iterations for solving the UTM1700B matrix. (ratio = 0.67, step = 2,   = 0.05, density = 3.48, level = 7.) 

Left: the number of forward and backward iterations versus the number of outer iterations to make the 
preconditioned system converge. Right: the number of forward and backward iterations versus the 
total CPU time for solving the preconditioned system. 
 
Scalability: We use the 3D convection-diffusion problem (3) to test the implementation scalability of 
our multilevel MSP pre-conditioner. The results are from solving a 7-point matrix with n = 1003 and 
nnz = 6940000 using different number of processors. Because the memory limitation of our parallel 
computers, we can only test the problems starting from 4 processors. To be convenient, we set the 
speedup in 4 processors case to be 4. We can see that the multilevel MSP scales well. In particular, we 
point out that it is not the same as the MSP algorithm, in which the number of the MSP iterations is not 
influenced by the number of processors when the whole problem size fixed. 

Conclusion: 
We have developed a multilevel sparse approximate inverse pre-conditioner based on the MSP 
strategies for solving general sparse matrices in 3D computing and displaying problems. A prototype 
implementation is tested to show the robustness and computational efficiency of this class of 
multilevel pre-conditioners. 

From the numerical results presented, we can see that forward and backward preconditioning is an 
important strategy for the convergence performance of the multilevel MSP pre-conditioner. A number 
of forward and backward preconditioning iterations helps the convergence of the multilevel MSP pre-
conditioner and a carefully chosen number of iterations will make the multilevel MSP pre-conditioner 
converge fast. 

In addition, the number of levels also influences the convergence and memory cost of the 
multilevel MSP pre-conditioner. A large number of levels will produce a good pre-conditioner with a 
high memory cost. A small number of levels will create a cheap pre-conditioner with low memory cost. 
The same thing happens when refer to the number of MSP steps used at each level of the multilevel 
MSP pre-conditioner. Fortunately, because the MSP algorithm creates a series of preconditioning 
matrices, we can use a two Schur complement strategy to decrease the memory cost, even sometimes 
the computational cost for the preconditioning phase may increase. 

When compared with MSP, multilevel MSP is much cheaper and more robust. The scalability of 
multilevel MSP is also tested by a 3D scene computing and displaying problem. The multilevel MSP pre-
conditioner seems to scale well. 
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