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Introduction: 
In algorithms of parts localization, the closest point of a measured point on model surface is chosen 
as its correspondence, which is also the key to process the localization of the measured data to CAD 
model. At present, Newton-type iterations are the most popular solving strategy. But, this process 
cannot provide full assurance that all solutions have been found [1]. Ma and Hewitt [2] have also 
showed that Newton-Raphson method occasionally still gives some wrong results even with a quite 
good initial value when applying it on the whole surface. Occasional errors maybe is trivial for the 
graphics processing, but it is fatal for some practical industrial applications. For example, in the 
machining allowance optimization, the distance between a point and its closest point on model 
surface is evaluated as the machining allowance, if wrong closest point is calculated at some area, an 
improper distribution of stock allowances, especially stock material shortage at this area, may appear 
such that the qualified blanks may be considered to be defective ones that need to be returned to the 
factory and is reworked, even although the CAD model actually can be enclosed within the blank [4]. 
For such industrial applications, the robustness of calculation of the closest point may be found to be 
more important and economical than the savings of the computing time. A different solving strategy, 
the methods based on subdivision [1, 2, 4], has been used for computing the closest point. When 
subdividing a surface, it is necessary to determine which segments contain the projection, which is the 
crux of the subdivision-based method. Different from those previous methods, the proposed method 
is to use the position relationships of the graph of the first derivative of the squared distance function 
and the u-v plane to discard the invalid segments. A simple formula is derived to facilitate the use of 
this new criterion.  

Main idea: 
For the sake of explanatory convenience, its basic principles are explained using Bézier surface. 
Mathematically, the point projection can be described as to find a corresponding point of a given point 
𝒑𝑖 on a surface 𝑆(𝑢, 𝑣) such that the distance between 𝒑𝑖 and its corresponding point is minimal. The 
function to be minimized was  

min
𝑢,𝑣

(𝑑𝑝
𝑆(𝑢, 𝑣)) = min

𝑢,𝑣
(‖𝒑𝑖 − 𝑆(𝑢, 𝑣)‖

2)                                                                     (1) 

If closest point is the inner point of the surface, the following condition is necessary, i.e. ∇𝑑𝑝
𝑆(𝑢, 𝑣) = 0. 

Thus the closest point is turned into a problem of solving the roots of ∇𝑑𝑝
𝑆(𝑢, 𝑣) = 0. In this paper, 

instead of using traditional numerical methods, a quadtree decomposition based method is given to 
solve it. An equivalent equation to ∇𝑑𝑝

𝑆(𝑢, 𝑣) = 0 is given by 

𝑤(𝑢, 𝑣) = (
𝜕𝑑𝑝

𝑆(𝑢, 𝑣)

𝜕𝑢
)

2

+ (
𝜕𝑑𝑝

𝑆(𝑢, 𝑣)

𝜕𝑣
)

2

= 0                                                                 (2) 
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After substituting the first derivative of squared distance function 𝑑𝑝
𝑆(𝑢, 𝑣) with respect to 𝑢 and 𝑣 , 

using the arithmetic for Bernstein polynomials referred to [5], 𝑤(𝑢, 𝑣) can be rewritten as a bivariate 
Bernstein-form polynomial as shown in Eq. (3) 

𝑤(𝑢, 𝑣) =∑∑𝑔𝑖,𝑗𝐵𝑖,4𝑚(𝑢)𝐵𝑖,4𝑛(𝑣)

4𝑛

𝑗=0

4𝑚

𝑖=0

                                                                       (3) 

where 𝑔𝑖,𝑗 are the Bernstein coefficients. The graph of 𝑤(𝑢, 𝑣) can be described by a Bézier surface over 

the 𝑢 − 𝑣 plane, and it is called as the first derivative surface in this paper and is modeled by the 
following parametric equation 

{
 
 

 
 𝑆𝑤: 𝒘(𝑢, 𝑣) =∑∑𝒈𝑖,𝑗𝐵𝑖,4𝑚(𝑢)𝐵𝑖,4𝑛(𝑣)

4𝑛

𝑗=0

4𝑚

𝑖=0

𝒈𝑖,𝑗 = [
𝑖

4𝑚
,
𝑗

4𝑛
, 𝑔𝑖,𝑗]

T

                                      

                                                                 (4) 

where 𝒈𝑖,𝑗 are the control points of the first derivative surface 𝑆𝑤. From Eq. (2), it can be seen that 

𝑤(𝑢, 𝑣) is nonnegative, namely, no portion of 𝑆𝑤 lies below the 𝑢 − 𝑣 plane, which implies that if 𝑤(𝑢, 𝑣) 
is equal to zero, 𝑆𝑤 has to be tangential to the 𝑢 − 𝑣 plane and the tangent point is the closest point.  

An adaptive quadtree decomposition on the 𝑢 − 𝑣 parameter domain is adopted to narrow the 
region containing the tangent point, and de Casteljau algorithm is used to subdivide the 𝑢 − 𝑣 domain 
into four sub-rectangular domains at the midpoints of 𝑢 and 𝑣. In searching the closest point, 𝑆𝑤 is 

subdivided recursively and control points of sub-𝑆𝑤
(𝑖)

 are checked simultaneously. If all control points 
are completely above the 𝑢 − 𝑣 plane, the node of the corresponding parameter domain is marked as 
one excluding the solutions. The searching process stops a depth 𝑑𝑡 where the size of the domain is 
less than a predefined threshold 𝜖𝑡, namely 2−𝑑𝑡 ≤ 𝜖𝑡. Then the quadtree is traversed and all unmarked 
nodes are collected at 𝑑𝑡 from which the intervals [𝑢𝑙 , 𝑢ℎ] × [𝑣𝑙 , 𝑣ℎ]containing possibly the closest point  
is produced and the closest point is calculated by 𝑆((𝑢𝑙 + 𝑢ℎ) 2⁄ , (𝑣𝑙 + 𝑣ℎ) 2⁄ ).  

Using knot insertion technique, a B-spline surface can be easily subdivided into a set of Bézier 
surface. For each Bézier surface, the above algorithm is implemented to judge whether 𝑤(𝑢, 𝑣) = 0 hold 
or not. For Bézier surfaces satisfying this condition, quadtree decomposition is implemented to search 
the closest point. In such a way, the proposed method can be nicely generalized to B-spline surface. 
Since this method does not involve any iteration, it avoids the requirement of pro- viding a good initial 
value for achieving the proper result and the disadvantages of the traditional numerical methods. 

 

 

The proposed algorithm has been implemented on a PC in C++. The ability that the proposed method 
deals correctly with the point projection in any situations, especially for the points near the surface 
boundary has been demonstrated as shown in Fig. 1. For a point shown in Fig.2, when the subdivision 
interval is set as 10−3, Newton-Raphson method produces a wrong answer, and our method lead to the 
proper projection. It has been also integrated into localization algorithm for machining allowance 
optimization and worked very well, as shown in Fig. 3. 

(a) (b)

 

Fig. 1: Point 
projection on surface 
and boundary  

Fig. 3: Application in machining 
allowance optimization. 

Fig. 2: Comparison between our 
method and Newton-Raphson 
method  

Test point

Correct closest point Wrong point
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Conclusions:  

Experimental results demonstrate that the proposed method can provides full assurance that all 
solutions can be found for any conditions, especially for the boundary points. Moreover, it also avoids 
the requirements of providing a good initial value for achieving the proper result, and does not also 
produce the uncontrollable occasional error resulted from iteration thus it is nicely applicable to 
localization for machining allowance optimization and inspection of the machined parts based on 
CAD model.  
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